H. A. Erbay

Learn More
In one space dimension, a non-local elastic model is based on a single integral law, giving the stress when the strain is known at all spatial points. In this study, we first derive a higher-order Boussinesq equation using locally non-linear theory of 1D non-local elasticity and then we are able to show that under certain conditions the Cauchy problem is(More)
We study the initial-value problem for a general class of nonlinear nonlocal wave equations arising in one-dimensional nonlocal elasticity. The model involves a convolution integral operator with a general kernel function whose Fourier transform is nonnegative. We show that some well-known examples of nonlinear wave equations, such as Boussinesq-type(More)
In this article we are concerned with the existence and orbital stability of traveling wave solutions of a general class of nonlocal wave equations: u tt − Lu xx = B(±|u| p−1 u) xx , p > 1. The main characteristic of this class of equations is the existence of two sources of dispersion, characterized by two coercive pseudo-differential operators L and B.(More)
The generalized nonlinear Schrödinger (GNLS) equation is solved numerically by a split-step Fourier method. The first, second and fourth-order versions of the method are presented. A classical problem concerning the motion of a single solitary wave is used to compare the first, second and fourth-order schemes in terms of the accuracy and the computational(More)
  • Hüsnü Ata Erbaya, Saadet Erbaya, Albert Erkipb, H. A. Erbay
  • 2015
We consider unidirectional wave propagation in a nonlocally and nonlinearly elastic medium whose constitutive equation is given by a convolution integral with a suitable kernel function. We first give a brief review of asymptotic wave models describing the unidirectional propagation of small-but-finite amplitude long waves. When the kernel function is the(More)
In the present study we prove rigorously that in the long-wave limit, the unidirectional solutions of a class of nonlocal wave equations to which the improved Boussinesq equation belongs are well approximated by the solutions of the Camassa-Holm equation over a long time scale. This general class of nonlocal wave equations model bidirectional wave(More)
In this article we are concerned with the instability and stability properties of traveling wave solutions of the double dispersion equation utt − uxx + auxxxx − buxxtt = −(|u| p−1 u)xx for p > 1, a ≥ b > 0. The main characteristic of this equation is the existence of two sources of dispersion, characterized by the terms uxxxx and uxxtt. We obtain an(More)