Hüseyin Yiğit

Learn More
Tn5 transposase (Tnp) overproduction is lethal to Escherichia coli. The overproduction causes cell filamentation and abnormal chromosome segregation. Here we present three lines of evidence strongly suggesting that Tnp overproduction killing is due to titration of topoisomerase I. First, a suppressor mutation of transposase overproduction killing, stkD10,(More)
Tn5 transposase (Tnp) overproduction is lethal to Escherichia coli. Genetic evidence suggested that this killing involves titration of E. coli topoisomerase I (Topo I). Here, we present biochemical evidence that supports this model. Tn5 Tnp copurifies with Topo I while nonkilling derivatives of Tnp, Delta37Tnp and Delta55Tnp (Inhibitor [Inh]), show reduced(More)
Overexpression of the Tn5 transposase (Tnp) was found to be lethal to Escherichia coli. This killing was not caused by transposition or dependent on the transpositional or DNA binding competence of Tnp. Instead, it was strictly correlated with the presence of a wild-type N terminus. Deletions removing just two N-terminal amino acids of Tnp resulted in(More)
Tn5 transposase (Tnp) overproduction is lethal to Escherichia coli. Tnp overproduction causes cell filamentation, abnormal chromosome segregation, and an increase in anucleated cell formation. There are two simple explanations for the observed phenotype: induction of the SOS response or of the heat shock response. The data presented here show that(More)
A direct full-wave solution via the Analytical Regularization Method (ARM) is proposed for the diffraction problem concerning knife edges under TM wave excitation. This problem is reduced to solving an infinite linear algebraic equation system of the second kind which, in principle, can be solved with arbitrary predetermined accuracy via a truncation(More)
  • 1