Héctor Tejeda

Learn More
Sensor networks are wireless adhoc networks where all the nodes cooperate for routing messages in the absence of a fixed infrastructure. Non-flooding, guaranteed delivery routing protocols are preferred because sensor networks have limited battery life. Location aware routing protocols are good candidates for sensor network applications, nevertheless they(More)
We give a new local test, called a Half-Space Proximal or HSP test, for extracting a sparse directed or undirected subgraph of a given unit disk graph. The HSP neighbors of each vertex are unique, given a fixed underlying unit disk graph. The HSP test is a fully distributed, computationally simple algorithm that is applied independently to each vertex of a(More)
Geographic routing protocols are one of the most common routing schemes for sensor networks. These protocols consist of two different modes of operation: greedy routing to forward data to the destination using neighbors which are closer to the destination than current node and face routing to avoid voids in the network. Face routing requires the graph to be(More)
Geographic routing for ad hoc and sensor networks has gained a lot of momentum during the last few years. In this scheme routes are created locally by each individual node, just based on the position of the destination and its local neighbors. To do that, a node selects its best neighbor (according to some metric) out of those being closer than itself to(More)
For an adhoc network with n nodes, we propose a proactive routing protocol without routing tables which uses O(log n) bits per node for the location service tables. The algorithm is based on 1-dimensional virtual coordinates, which we call labels. The decision of where to forward a packet is oblivious and purely local, depending only on the labels of the(More)
  • 1