Håkan Andréasson

Learn More
The stability features of steady states of the spherically symmetric Einstein-Vlasov system are investigated numerically. We find support for the conjecture by Zeldovich and Novikov that the binding energy maximum along a steady state sequence signals the onset of instability, a conjecture which we extend to and confirm for non-isotropic states. The sign of(More)
The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special rela-tivistic(More)
The global structure of solutions of the Einstein equations coupled to the Vlasov equation is investigated in the presence of a two-dimensional symmetry group. It is shown that there exist global CMC and areal time foliations. The proof is based on long-time existence theorems for the partial differential equations resulting from the Einstein-Vlasov system(More)
Using both numerical and analytical tools we study various features of static, spherically symmetric solutions of the Einstein-Vlasov system. In particular, we investigate the possible shapes of their mass-energy density and find that they can be multi-peaked, we give numerical evidence and a partial proof for the conjecture that the Buchdahl inequality sup(More)
We consider the spherically symmetric, asymptotically flat Einstein equations coupled to a suitable matter model and find explicit conditions on the initial data which guarantee the formation of a black hole in the evolution. We establish such results for general matter models characterized by general conditions on the matter quantities, and we prove that(More)
In a previous work [1] matter models such that the energy density ρ ≥ 0, and the radial-and tangential pressures p ≥ 0 and q, satisfy p + q ≤ Ωρ, Ω ≥ 1, were considered in the context of Buchdahl's inequality. It was proved that static shell solutions of the spherically symmetric Einstein equations obey a Buchdahl type inequality whenever the support of the(More)
Classical solutions of the spherically symmetric Nordström-Vlasov system are shown to exist globally in time. The main motivation for investigating the mathematical properties of the Nordström-Vlasov system is its relation to the Einstein-Vlasov system. The former is not a physically correct model, but it is expected to capture some of the typical features(More)
We show that deletion of the loss part of the collision term in all physically relevant versions of the Boltzmann equation, including the rel-ativistic case, will in general lead to blowup in finite time of a solution and hence prevent global existence. Our result corrects an error in the proof given in Ref. [12], where the result was announced for the(More)