Gyungock Kim

Learn More
We show that the temperature dependence of a silicon waveguide can be controlled well by using a slot waveguide structure filled with a polymer material. Without a slot, the amount of temperature-dependent wavelength shift for TE mode of a silicon waveguide ring resonator is very slightly reduced from 77 pm/ degrees C to 66 pm/ degrees C by using a polymer(More)
We demonstrate 3rd order micro-ring filters, 100 GHz-spaced 16 channels and 50 GHz-spaced 32 channels. Fabrication-induced resonant wavelength errors, σ = 0.237 nm, and temperature-dependent wavelength shift, 0.043 nm/°C tolerable to ΔT>10 °C, has been measured on filters based on the fundamental TM mode. The problem of CMOS-compatible photolithography is(More)
We present small-sized depletion-type silicon Mach-Zehnder (MZ) modulator with a vertically dipped PN depletion junction (VDJ) phase shifter based on a CMOS compatible process. The fabricated device with a 100 μm long VDJ phase shifter shows a VπLπ of ∼0.6  V·cm with a 3 dB bandwidth of ∼50  GHz at -2  V bias. The measured extinction ratios are 6 and 5.3 dB(More)
In this paper, we investigate the temperature dependence of a silicon-on-insulator-based silicon nanophotonic ring resonator covered with a polymeric overlayer. Temperature-dependent wavelength shift is measured to be as low as 5 pm/degC for the TM mode in a silicon ring resonator composed of a 500 times 220 nm<sup>2</sup> channel waveguide. We also show(More)
We present high performance silicon photonic circuits (PICs) defined for off-chip or on-chip photonic interconnects, where PN depletion Mach-Zehnder modulators and evanescent-coupled waveguide Ge-on-Si photodetectors were monolithically integrated on an SOI wafer with CMOS-compatible process. The fabricated silicon PIC(off-chip) for off-chip optical(More)
We present a high speed optical modulation using carrier depletion effect in an asymmetric silicon p-n diode resonator. To optimize coupling efficiency and reduce bending loss, two-step-etched waveguide is used in the racetrack resonator with a directional coupler. The quality factor of the resonator with a circumference of 260 um is 9,482, and the DC(More)
This paper presents a 22 to 26.5 Gb/s optical receiver with an all-digital clock and data recovery (AD-CDR) fabricated in a 65 nm CMOS process. The receiver consists of an optical front-end and a half-rate bang-bang clock and data recovery circuit. The optical front-end achieves low power consumption by using inverter-based amplifiers and realizes(More)