Learn More
Precise prediction of prokaryotic translation efficiency can provide valuable information for optimizing bacterial host for the production of biochemical compounds or recombinant proteins. However, dynamic changes in mRNA folding throughout translation make it difficult to assess translation efficiency. Here, we systematically determined the universal(More)
The intracellular redox state plays an important role in the cellular physiology that determines the efficiency of chemical and biofuel production by microbial cell factories. However, it is difficult to achieve optimal redox rebalancing of synthetic pathways owing to the sensitive responses of cellular physiology according as the intracellular redox state(More)
Single gene overexpression in product pathways such as lysine synthesis has often been employed in metabolic engineering efforts aiming at pathway flux amplification and metabolite overproduction. This approach is limited due to metabolic flux imbalances that often lead to unpredictable physiological responses and suboptimal metabolite productivity. This(More)
An extension of directed evolution strategies to genome-wide variations increases the chance of obtaining metabolite-overproducing microbes. However, a general high-throughput screening platform for selecting improved strains remains out of reach. Here, to expedite the evolution of metabolite-producing microbes, we utilize synthetic RNA devices comprising a(More)
A novel photosynthetic bacterium, Rhodopseudomonas palustris P4, was isolated from an anaerobic wastewater sludge digester by virtue of its ability to utilize CO with the production of H2. P4 grew under light with CO as a sole carbon source with the doubling time of 2 h and produced H2 at 20.7 mmol −1 cell h.
Redesign or modification of the cellular physiology requires a quantitatively well-controlled expression system known as the "tunable expression." Although the modification of promoters demonstrates the great impact on the translation efficiency, it is difficult to detect the proper variants required for tunable expression. The 5'-untranslated region (UTR),(More)
Among various routes for the biological hydrogen production, the NAD(P)H-dependent pentose phosphate (PP) pathway is the most efficient for the dark fermentation. Few studies, however, have focused on the glucose-6-phosphate 1-dehydrogenase, encoded by zwf, as a key enzyme activating the PP pathway. Although the gluconeogenic activity is essential for(More)
Glycolysis has evolved to be a highly robust mechanism for maintaining the cellular metabolism of living organisms. However, relevant modifications of glycolytic activity are required to intentionally modulate cellular phenotypes. Here, we designed a platform that allows switching control of glycolysis in Escherichia coli in response to an environmental(More)
A new bacterium, Citrobacter sp. Y19, catalyzing the water-gas shift reaction was isolated from an anaerobic wastewater sludge digester. It grew aerobically with a high specific growth rate of 0.7 h−1 in a mineral salt medium supplemented with yeast extract and Bacto-tryptone, and produced H2 under anaerobic conditions after the cells were transferred to(More)
The objective of this study was to develop a novel technique for parallel analysis of eight important foodborne microbes using capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP) coupled with multiplex PCR. Specific primers for multiplex PCR amplification of the 16S rRNA gene were designed, corresponding to eight species of(More)