Learn More
We previously evaluated the short-term follow-up preliminary data of mesenchymal stem cells (MSCs) transplantation in patients with ischemic stroke. The present study was conducted to evaluate the long-term safety and efficacy of i.v. MSCs transplantation in a larger population. To accomplish this, we performed an open-label, observer-blinded clinical trial(More)
The endoplasmic reticulum (ER) stress results from disrupted protein folding triggered by protein mutation or oxidation, reduced proteasome activity, and altered Ca2+ homeostasis. ER stress is accompanied by activation of the unfolded protein response (UPR) and cell death pathway. We examined if the UPR and cell death pathway would be activated in(More)
Excitotoxicity, oxidative stress, and apoptosis have been recognized as routes to neuronal death in various neurological diseases. We examined the possibility that PHF-1 tau, a substrate for various proteases, would be selectively cleaved depending upon routes of neuronal death. Cleavage form of PHF-1 tau was not observed in cortical cell cultures exposed(More)
Human mesenchymal stem cells (hMSCs) are known to have the capacity to differentiate into various cell types, including neurons. To examine our hypothesis that miRNA was involved in neuronal differentiation of hMSCs, CoCl2, a hypoxia-mimicking agent was used to induce neuronal differentiation, which was assessed by determining the expression of neuronal(More)
Ischemic cerebral stroke is one of the leading global causes of mortality and morbidity. Ischemic preconditioning (IPC) refers to a sublethal ischemia and resulting in tolerance to subsequent severe ischemic injury. Although several pathways are reportedly involved in IPC-mediated neuroprotection, the functional role of astrocytes is not fully understood.(More)
BACKGROUND Recovery after a major stroke is usually limited, but cell therapy for patients with fixed neurologic deficits is emerging. Several recent clinical trials have investigated mesenchymal stem cell (MSC) therapy for patients with ischemic stroke. We previously reported the results of a controlled trial on the application of autologous MSCs in(More)
BACKGROUND Evidence suggests that rheumatoid arthritis (RA) may enhance or reduce the progression of Alzheimer's disease (AD). The present study was performed to directly explore the effects of collagen-induced rheumatoid arthritis (CIA) on amyloid plaque formation, microglial activation, and microvascular pathology in the cortex and hippocampus of the(More)
BACKGROUND Several studies have examined the enhanced efficacy of mesenchymal stem cells (MSCs) using neurotrophic factor transfection in ischemic rat models. However, gene therapy, e.g., the application of MSCs transfected with neurotrophic factors, is not feasible in clinical practice for ethical reasons. Therefore, we evaluated cultivation with specific(More)
In this study, we hypothesized that the delivery of molecules that regulate the microenvironment after a cerebral infarction can influence regeneration potential after a stroke. Stromal cell-derived factor-1α (SDF-1α) is a chemoattractant molecule that plays a pivotal role in recruiting endothelial progenitor cells (EPCs) to the infarct region after stroke.(More)
Preclinical and clinical studies have shown that the application of CD105(+) mesenchymal stem cells (MSCs) is feasible and may lead to recovery after stroke. In addition, circulating microparticles are reportedly functional in various disease conditions. We tested the levels of circulating CD105(+) microparticles in patients with acute ischemic stroke. The(More)