Learn More
The fungal pathogen Candida albicans has a multilayered cell wall composed of an outer layer of proteins glycosylated with N- or O-linked mannosyl residues and an inner skeletal layer of beta-glucans and chitin. We demonstrate that cytokine production by human mononuclear cells or murine macrophages was markedly reduced when stimulated by C. albicans(More)
The outer layer of the Candida albicans cell wall is enriched in highly glycosylated mannoproteins that are the immediate point of contact with the host and strongly influence the host-fungal interaction. N-Glycans are the major form of mannoprotein modification and consist of a core structure, common to all eukaryotes, that is further elaborated in the(More)
The green fluorescent protein (GFP) of Aequorea victoria has been developed here as a reporter for gene expression and protein localization in Candida albicans. When wild-type (wt) GFP was expressed in C. albicans, it was not possible to detect fluorescence or a translation product for the wt protein. Since this was probably due in part to the presence of(More)
The MNT1 gene of the human fungal pathogen Candida albicans is involved in O-glycosylation of cell wall and secreted proteins and is important for adherence of C. albicans to host surfaces and for virulence. Here we describe the molecular analysis of CaMNT2, a second member of the MNT1-like gene family in C. albicans. Mnt2p also functions in(More)
The cell surface of Candida albicans is the immediate point of contact with the host. The outer layer of the cell wall is enriched in highly glycosylated mannoproteins that are implicated in many aspects of the host-fungus interaction. Glycosylation of cell wall proteins is initiated in the endoplasmic reticulum and then elaborated in the Golgi as the(More)
Eukaryote ribosomal translation is terminated when release factor eRF1, in a complex with eRF3, binds to one of the three stop codons. The tertiary structure and dimensions of eRF1 are similar to that of a tRNA, supporting the hypothesis that release factors may act as molecular mimics of tRNAs. To identify the yeast eRF1 stop codon recognition domain(More)
The levels of pyruvate kinase (PYK1), alcohol dehydrogenase (ADH1), phosphoglycerate kinase (PGK1) and phosphoglycerate mutase (GPM1) mRNAs were measured during batch growth and during the yeast-to-hyphal transition in Candida albicans. The four mRNAs behaved in a similar fashion. PYK1, ADH1, PGK1 and GPM1 mRNA levels were shown to increase dramatically(More)
The Candida albicans ADH1 gene encodes an alcohol dehydrogenase which is immunogenic during infections in humans. The ADH1 gene was isolated and sequenced, and the 5'- and 3'-ends of its mRNA were mapped. The gene encodes a 350 amino acid polypeptide with strong homology (70.5-85.2% identity) to alcohol dehydrogenases from Saccharomyces cerevisiae,(More)
The pathogen Candida albicans responds to amino acid starvation by activating pseudohyphal development and the expression of amino acid biosynthetic genes (GCN response). In Saccharomyces cerevisiae, the GCN response is dependent on Gcn2, which regulates the translation of the transcription factor Gcn4. Therefore, we examined the role of Gcn2 in C. albicans(More)