Gwenaelle Rousse

Learn More
The development of new electrode materials, which are composed of Earth-abundant elements and that can be made via eco-efficient processes, is becoming absolutely necessary for reasons of sustainable production. The 3.9 V triplite-phase of LiFeSO(4)F, compared to the 3.6 V tavorite-phase, could satisfy this requirement provided the currently complex(More)
Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion-deinsertion redox process involving(More)
We report the direct synthesis of powder Na3Ti2(PO4)3 together with its low-potential electrochemical performance and crystal structure elucidation for the reduced and oxidized phases. First-principles calculations at the density functional theory level have been performed to gain further insight into the electrochemistry of Ti(IV)/Ti(III) and(More)
Although Li-rich layered oxides (Li1+xNiyCozMn1-x-y-zO2 > 250 mAh g(-1)) are attractive electrode materials providing energy densities more than 15% higher than today's commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds.(More)
Li-ion batteries have empowered consumer electronics and are now seen as the best choice to propel forward the development of eco-friendly (hybrid) electric vehicles. To enhance the energy density, an intensive search has been made for new polyanionic compounds that have a higher potential for the Fe²⁺/Fe³⁺ redox couple. Herein we push this potential to(More)
Lithium-ion (Li-ion) batteries that rely on cationic redox reactions are the primary energy source for portable electronics. One pathway toward greater energy density is through the use of Li-rich layered oxides. The capacity of this class of materials (>270 milliampere hours per gram) has been shown to be nested in anionic redox reactions, which are(More)
Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g-1. In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural(More)
Li-rich oxides continue to be of immense interest as potential next generation Li-ion battery positive electrodes, and yet the role of oxygen during cycling is still poorly understood. Here, the complex electrochemical behavior of Li4FeSbO6 materials is studied thoroughly with a variety of methods. Herein, we show that oxygen release occurs at a distinct(More)
Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an(More)
Ch. Bellin,1 B. Barbiellini,2 S. Klotz,1 T. Buslaps,3 G. Rousse,1 Th. Strässle,4 and A. Shukla1 1Institut de Minéralogie et Physique de la Matière Condensée, Université UPMC, UMR CNRS 7590, case 115, 4 place Jussieu, F-75252 Paris Cedex 05, France 2Physics Department, Northeastern University, Boston, Massachusetts 02115, USA 3European Synchrotron Radiation(More)