Gwangrog Lee

Learn More
Ankyrin repeats are an amino-acid motif believed to function in protein recognition; they are present in tandem copies in diverse proteins in nearly all phyla. Ankyrin repeats contain antiparallel alpha-helices that can stack to form a superhelical spiral. Visual inspection of the extrapolated structure of 24 ankyrin-R repeats indicates the possibility of(More)
Anfinsen's thermodynamic hypothesis implies that proteins can encode for stretching through reversible loss of structure. However, large in vitro extensions of proteins that occur through a progressive unfolding of their domains typically dissipate a significant amount of energy, and therefore are not thermodynamically reversible. Some coiled-coil proteins(More)
Rrp44 (Dis3) is a key catalytic subunit of the yeast exosome complex and can processively digest structured RNA one nucleotide at a time in the 3' to 5' direction. Its motor function is powered by the energy released from the hydrolytic nuclease reaction instead of adenosine triphosphate hydrolysis as in conventional helicases. Single-molecule fluorescence(More)
Recent atomic force microscopy stretching measurements of single polysaccharide molecules suggest that their elasticity is governed by force-induced conformational transitions of the pyranose ring. However, the mechanism of these transitions and the mechanics of the pyranose ring are not fully understood. Here we use steered molecular dynamics simulations(More)
Self-assembled polymers whose main chains are defined by reversible DNA base pairing form bridges between the tip of an atomic force microscope and substrate. The forces associated with the rupture of these assemblies are independent of polymer bridge length, and they resemble those expected for the isolated associations defining the polymer bridges. The(More)
Recent single-molecule atomic force microscopy (AFM) experiments have revealed that some polysaccharides display large deviations from force-extension relationships of other polymers which typically behave as simple entropic springs. However, the mechanism of these deviations has not been fully elucidated. Here we report the use of novel quantum mechanical(More)
Molecular motors have inspired many avenues of research for nanotechnology but most molecular motors studied so far allow only unidirectional movement. The archaeal RNA-exosome is a reversible motor that can either polymerize or degrade an RNA strand, depending on the chemical environments. We developed a single molecule fluorescence assay to analyze the(More)
λ exonuclease degrades one strand of duplex DNA in the 5'-to-3' direction to generate a 3' overhang required for recombination. Its ability to hydrolyze thousands of nucleotides processively is attributed to its ring structure, and most studies have focused on the processive phase. Here we have used single-molecule fluorescence resonance energy transfer(More)