Learn More
This paper presents measurements of three-dimensional (3-D) displacements and velocities of the coronary arteries due to the myocardial beating motion and due to breathing. Data were acquired by reconstructing the coronary arteries and their motion from biplane angiograms in 10 patients. A parametric motion model was used to separate the cardiac and(More)
A method for prospective motion correction of X-ray imaging of the heart is presented. A 3D + t coronary model is reconstructed from a biplane coronary angiogram obtained during free breathing. The deformation field is parameterized by cardiac and respiratory phase, which enables the estimation of the state of the arteries at any phase of the(More)
Respiratory motion compensation for cardiac imaging requires knowledge of the heart's motion and deformation during breathing. This paper presents a method for measuring the natural tidal respiratory motion of the heart from free breathing coronary angiograms. A three-dimensional (3-D) deformation field describing the cardiac and respiratory motion of the(More)
Magnetic resonance (MR) and computed tomography coronary imaging is susceptible to artifacts caused by motion of the heart. The presence of rest periods during the cardiac and respiratory cycles suggests that images free of motion artifacts could be acquired. In this paper, we studied the rest period (RP) duration of the coronary arteries during a cardiac(More)
A three-dimensional (3-D) method for tracking the coronary arteries through a temporal sequence of biplane X-ray angiography images is presented. A 3-D centerline model of the coronary vasculature is reconstructed from a biplane image pair at one time frame, and its motion is tracked using a coarse-to-fine hierarchy of motion models. Three-dimensional(More)
PURPOSE We provide a 3-dimensional (3D) model of the pelvic floor musculature in patients with classic bladder exstrophy using magnetic resonance imaging (MRI). MATERIALS AND METHODS Five male infants 1 day to 12 months old underwent MRI of the pelvis, which was compared to pelvic MRI of 1 male infant without pelvic floor abnormalities. Of the patients 3(More)
Static X-ray computed tomography (CT) volumes are often used as anatomic roadmaps during catheter-based cardiac interventions performed under X-ray fluoroscopy guidance. These CT volumes provide a high-resolution depiction of soft-tissue structures, but at only a single point within the cardiac and respiratory cycles. Augmenting these static CT roadmaps(More)
Magnetic resonance (MR) coronary imaging is susceptible to artifacts caused by motion of the heart. The purpose of this thesis was to study the respiratory motion of the coronary arteries and to use the results to develop strategies for improved MR imaging. The first section of the thesis describes an MR motion correction technique for objects undergoing a(More)
A three-dimensional (3-D) method for tracking the coronary arteries through a temporal sequence of biplane X-ray angiography images is presented. A 3-D centerline model of the coronary vasculature is reconstructed from a biplane image pair at one time frame, and its motion is tracked using a coarse-to-fine hierarchy of motion models. Three-dimensional(More)
  • 1