Guy S. Bewick

Learn More
The fluorescent dyes FM1-43 and RH414 label motor nerve terminals in an activity-dependent fashion that involves dye uptake by synaptic vesicles that are recycling. This allows optical monitoring of vesicle recycling in living nerve terminals to determine how recycled vesicles reenter the vesicle pool. The results suggest that recycled vesicles mix with the(More)
Living motor nerve terminals from several species can be stained in an activity-dependent fashion by certain styryl dyes, such as RH414, RH795, and a new dye, FM1-43, which can be imaged independently of the others. The dyes evidently become trapped within recycled synaptic vesicles. In frog cutaneus pectoris muscle, bright fluorescent spots spaced(More)
1. Frog cutaneous pectoris motor nerve terminals were loaded with the fluorescent dye FM1-43, which produced a series of discrete spots along the length of terminals, each spot evidently marking a cluster of synaptic vesicles. Terminals were imaged for 2-10 min as they destained during repetitive nerve stimulation. Endplate potentials (EPPs) were recorded(More)
The distributions of dystrophin, 'dystrophin-related protein' (DRP) and beta-spectrin were compared with that of acetylcholine receptors (AChRs) at rat nerve-muscle junctions (NMJs) using immunofluorescence techniques. In sections, monoclonal antibodies (MAbs) to dystrophin and beta-spectrin labelled the entire sarcolemma but were concentrated at the NMJs(More)
Fifty-nanometre diameter, clear, synaptic-like vesicles (SLVs) are found in primary mechanosensory nerve terminals of vertebrate and invertebrate animals. We have investigated their role in mechanosensory function using the muscle spindle primary endings of rat Ia afferents as a model. Uptake and release of the synaptic vesicle marker FM1-43 indicated that(More)
We have investigated whether rat motor nerve terminals with different in vivo activity patterns also have different vesicle trafficking characteristics. To do this, we monitored, using combined optical and electrical techniques, the rate of exocytosis (during different frequencies and patterns of activity), the releasable pool size, and the recycle time of(More)
We stained synaptic vesicles in frog motor nerve terminals with FM1-43 and studied changes in the shape and position of vesicle clusters during nerve stimulation. Each stained vesicle cluster appeared as a fluorescent spot. During repetitive nerve stimulation the spots gradually dimmed, most without changing shape or position. Occasionally, however, a spot(More)
We investigated whether channels of the epithelial sodium/amiloride-sensitive degenerin (ENaC/DEG) family are a major contributor to mechanosensory transduction in primary mechanosensory afferents, using adult rat muscle spindles as a model system. Stretch-evoked afferent discharge was reduced in a dose-dependent manner by amiloride and three analogues -(More)
At the adult mammalian neuromuscular junction, acetylcholine receptors are concentrated at the tops of the postsynaptic folds and voltage-gated sodium channels are concentrated in their depths. It is likely that this arrangement involves linkage of the ion channels to components of the underlying membrane cytoskeleton. In rats, the mature distribution of(More)
Our aim in the present study was to determine whether a glutamatergic modulatory system involving synaptic-like vesicles (SLVs) is present in the lanceolate ending of the mouse and rat hair follicle and, if so, to assess its similarity to that of the rat muscle spindle annulospiral ending we have described previously. Both types of endings are formed by the(More)