Guy Lev

Learn More
In recent years, the problem of associating a sentence with an image has gained a lot of attention. This work continues to push the envelope and makes further progress in the performance of image annotation and image search by a sentence tasks. In this work, we are using the Fisher Vector as a sentence representation by pooling the word2vec embedding of(More)
In the traditional object recognition pipeline, descriptors are densely sampled over an image, pooled into a high dimensional non-linear representation and then passed to a classifier. In recent years, Fisher Vectors have proven empirically to be the leading representation for a large variety of applications. The Fisher Vector is typically taken as the(More)
Statistical methods have shown a remarkable ability to capture semantics. The word2vec method is a frequently cited method for capturing meaningful semantic relations between words from a large text corpus. It has the advantage of not requiring any tagging while training. The prevailing view is, however, that it is lacks the ability to capture semantics of(More)
Recurrent Neural Networks (RNNs) have had considerable success in classifying and predicting sequences. We demonstrate that RNNs can be effectively used in order to encode sequences and provide effective representations. The methodology we use is based on Fisher Vectors, where the RNNs are the generative probabilistic models and the partial derivatives are(More)
  • 1