Guy D. Griffin

Learn More
The feasibility of using a novel detection scheme for the analysis of biological warfare agents is demonstrated using Bacillus globigii spores, a surrogate species for Bacillus anthracis. In this paper, a sensitive and selective enzyme-linked immunosorbent assay using a novel fluorogenic alkaline phosphatase substrate (dimethylacridinone phosphate) is(More)
This work demonstrates the detection of E. coli using a 2-dimensional photosensor array biochip which is efficiently equipped with a microfluidics sample/reagent delivery system for on-chip monitoring of bioassays. The biochip features a 4 x 4 array of independently operating photodiodes that are integrated along with amplifiers, discriminators and logic(More)
Submicrometer fiber-optic biosensors have been developed and used to measure toxic chemicals within single cells. Optical fibers that have been pulled to a distal-end diameter of less than 1 micrometer are coated with antibodies to selectively bind the species of interest. This paper describes the use of these fibers to selectively measure the concentration(More)
We report for the first time the application of a biochip using the molecular beacon (MB) detection scheme. The usability of this biochip novel detection system for the analysis of the breast cancer gene BRCA1 is demonstrated using molecular beacon probes. The MB is designed for the BRCA1 gene and a miniature biochip system is used for detection. The(More)
We report here the application of an antibody-based nanoprobe for in situ measurements of a single cell. The nanoprobe employs antibody-based receptors targeted to a fluorescent analyte, benzopyrene tetrol (BPT), a metabolite of the carcinogen benzo[a]pyrene (BaP) and of the BaP-DNA adduct. Detection of BPT is of great biomedical interest, since this(More)
The nondestructive imaging of biomolecules in nanometer domains in their original location and position as adsorbed or deposited on a surface is of garners considerable experimental interest. Near-field scanning optical microscopy (NSOM) is an emerging technique with its astonishing resolving power of <100-nm domains, and nondestructive nature compared with(More)
This work describes the fabrication and the application of an antibody-based fiber-optic nanosensor for in situ measurements of the carcinogen benzo[a]pyrene (BaP) in a single cell. This antibody-based spectroscopic nanosensor is miniaturized enabling the detection of fluorescent analytes in single cells. In addition to measuring fluorescent analytes in(More)
Recent use of biological warfare (BW) agents has led to a growing interest in the rapid and sensitive detection of pathogens. Therefore, the development of field-usable detection devices for sensitive and selective detection of BW agents is an important issue. In this work, we report a portable biochip system based on complementary metal oxide semiconductor(More)
Carbon nanofiber electrode architectures are used to provide for long-term, neuroelectroanalytical measurements of the dynamic processes of intercellular communication between excitable cells. Individually addressed, vertically aligned carbon nanofibers are incorporated into multielement electrode arrays upon which excitable cell matrixes of both(More)
In this work, the intracellular measurement of cytochrome c using an optical nanobiosensor is demonstrated. The nanobiosensor is a unique fiberoptics-based tool which allows the minimally invasive analysis of intracellular components. Cytochrome c is a very important protein to the process which produces cellular energy. In addition, cytochrome c is(More)