Gustavo Rivas

Learn More
The aim of this review is to summarize the most relevant contributions in the development of electrochemical (bio)sensors based on carbon nanotubes in the last years. Since the first application of carbon nanotubes in the preparation of an electrochemical sensor, an increasing number of publications involving carbon nanotubes-based sensors have been(More)
This work reports the advantages of a label free electrochemical aptasensor for the detection of lysozyme. The biorecognition platform was obtained by the adsorption of the aptamer on the surface of a carbon paste electrode (CPE) previously blocked with mouse immunoglobulin under controlled-potential conditions. The recognition event was detected from the(More)
An electrochemical hybridization biosensor was developed for the detection of short DNA fragments specific to the deadly waterborne pathogen Cryptosporidium. The sensor relies on the immobilization of a 38-mer oligonucleotide unique to the Cryptosporidium DNA onto the carbon-paste transducer, and employs a highly sensitive chronopotentiometric transduction(More)
The work proposed here deals with the design and characterization of biorecognition layers for the amperometric glucose determination based on the self-assembling of new chitosan derivatives, Nafion and glucose oxidase onto thiolated gold electrodes. The supramolecular multistructure is obtained by deposition of a layer of chitosan derivative (quaternized(More)
We report for the first time the use of double stranded calf-thymus DNA (dsDNA) to successfully disperse bamboo-like multi-walled carbon nanotubes (bCNT). The dispersion and the modified electrodes were studied by different spectroscopic, microscopic and electrochemical techniques. The drastic treatment for dispersing the bCNT (45min sonication in a 50%(More)
Platelet plasma membrane glycoproteins IIb (GPIIb) and IIIa (GPIIIa) form a Ca(2+)-dependent heterodimer. GPIIb/IIIa, which serves as the receptor for fibrinogen and other adhesive proteins at the surface of activated platelets. Using equilibrium dialysis measurements, it was established that both GPIIb and GPIIIa in solution have low-affinity(More)
FtsZ is a bacterial protein that forms filaments that play an essential role in midcell constriction during the process of cell division. The shape of individual filaments of different lengths imaged with atomic force microscopy was modeled considering the protein monomers as beads in a chain and a few parameters to represent their effective interactions.(More)
Enzyme-based hybridization assays for the simultaneous electrochemical measurements of two DNA targets are described. Two encoding enzymes, alkaline phosphatase and beta-galactosidase, are used to differentiate the signals of two DNA targets in connection to chronopotentiometric measurements of their electroactive phenol and alpha-naphthol products. These(More)
This review present a critical comparison of the electrochemical behavior and analytical performance of glassy carbon electrodes (GCE) modified with carbon nanotubes (CNTs) dispersed in different polymers: polyethylenimine (PEI), PEI functionalized with dopamine (PEI-Do), polyhistidine (Polyhis), polylysine (Polylys), glucose oxidase (GOx) and double(More)
An electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus type 1 (HIV-1) is described. The sensor relies on the immobilization and hybridization of the 21- or 42-mer single-stranded oligonucleotide from the HIV-1 U5 long terminal repeat (LTR) sequence at carbon paste or strip electrodes. The extent of(More)