Learn More
Intercellular communication involves either direct cell-cell contact or release and uptake of diffusible signals, two strategies mediated by distinct and largely nonoverlapping sets of molecules. Here, we show that the neural cell adhesion molecule NCAM can function as a signaling receptor for members of the GDNF ligand family. Association of NCAM with(More)
Although both c-Ret and GFRalpha1 are required for responsiveness to GDNF, GFRalpha1 is widely expressed in the absence of c-Ret, suggesting alternative roles for "ectopic" sites of GFRalpha1 expression. We show that GFRalpha1 is released by neuronal cells, Schwann cells, and injured sciatic nerve. c-Ret stimulation in trans by soluble or immobilized(More)
Immobilized and diffusible molecular cues regulate axon guidance during development. GFRalpha1, a GPI-anchored receptor for GDNF, is expressed as both membrane bound and secreted forms by accessory nerve cells and peripheral targets of developing sensory and sympathetic neurons during the period of target innervation. A relative deficit of GFRalpha1 in(More)
The establishment of synaptic connections requires precise alignment of pre- and postsynaptic terminals. The glial cell line-derived neurotrophic factor (GDNF) receptor GFRalpha1 is enriched at pre- and postsynaptic compartments in hippocampal neurons, suggesting that it has a function in synapse formation. GDNF triggered trans-homophilic binding between(More)
The GDNF family ligands (GFLs) signal through the canonical signaling receptor Ret and a glycosyl-phosphatidylinositol-anchored co-receptor, GFRalpha. In recent years, signaling by GFLs has been shown to be more complex than originally assumed. The discrepant expression between GFRalphas and Ret has suggested the existence of additional signal-transducing(More)
Lipid rafts are specialized, liquid-ordered subdomains of the plasma membrane. Through their ability to promote specific compartmentalization of lipids and membrane proteins, lipid rafts have emerged as membrane platforms specialized for signal transduction. In recent years, signaling by neurotrophic factors and their receptors has been shown to depend upon(More)
Olfactory bulb (OB) interneurons are generated from neuroblast cells derived from the anterior subventricular zone (SVZa) of the forebrain. The mechanisms guiding the rostral migration of these neuronal precursors are not well understood. Here, we show that glial cell line-derived neurotrophic factor (GDNF) is produced in the olfactory bulb but distributed(More)
Glial cell line-derived neurotrophic factor (GDNF)/Ret signaling has potent trophic effects on ventral midbrain dopaminergic, motor, sensory, and sympathetic neurons. The molecular mechanisms that restrict Ret receptor tyrosine kinase activation are not well understood. Here, we show that Lrig1, a transmembrane protein containing leucine-rich repeats and(More)
c-Ret kinase (cis signaling). The two receptors also interact with low affinity in the absence of ligand, resulting in the formation of a less selective receptor complex capable of interacting with other members of the GDNF ligand family as well as several GDNF mutants with de-Three close mammalian 17177 Stockholm homologs of GDNF have been identified, all(More)
It is widely accepted that the formation of long-term memory (LTM) requires neuronal gene expression, protein synthesis and the remodeling of synaptic contacts. From mollusk to mammals, the cAMP/PKA/CREB signaling pathway has been shown to play a pivotal role in the establishment of LTM. More recently, the MAPK cascade has been also involved in memory(More)