Gustavo Düring

Learn More
We show numerically that the one-dimensional quintic complex Ginzburg–Landau equation admits four different types of stable hole solutions. We present a simple analytic method which permits to calculate the region of existence and approximate shape of stable hole solutions in this equation. The analytic results are in good agreement with numerical(More)
While the rheology of non-brownian suspensions in the dilute regime is well understood, their behavior in the dense limit remains mystifying. As the packing fraction of particles increases, particle motion becomes more collective, leading to a growing length scale and scaling properties in the rheology as the material approaches the jamming transition.(More)
We show numerically that the response of simple amorphous solids (elastic networks and particle packings) to a local force dipole is characterized by a lengthscale lc that diverges as unjamming is approached as lc ∼ (z - 2d)(-1/2), where z ≥ 2d is the mean coordination, and d is the spatial dimension, at odds with previous numerical claims. We also show how(More)
Dense non-Brownian suspension flows of hard particles display mystifying properties: As the jamming threshold is approached, the viscosity diverges, as well as a length scale that can be identified from velocity correlations. To unravel the microscopic mechanism governing dissipation and its connection to the observed correlation length, we develop an(More)
We study nonlocal effects associated with particle collisions in dense suspension flows, in the context of the Affine Solvent Model, known to capture various aspects of the jamming transition. We show that an individual collision changes significantly the velocity field on a characteristic volume Ω_{c}∼1/δz that diverges as jamming is approached, where δz(More)
Connectedness and applied stress strongly affect elasticity in solids. In various amorphous materials, mechanical stability can be lost either by reducing connectedness or by increasing pressure. We present an effective medium theory of elasticity that extends previous approaches by incorporating the effect of compression, of amplitude e, allowing one to(More)
  • 1