Learn More
A substantial increase in grain yield potential is required, along with better use of water and fertilizer, to ensure food security and environmental protection in future decades. For improvements in photosynthetic capacity to result in additional wheat yield, extra assimilates must be partitioned to developing spikes and grains and/or potential grain(More)
Wheat yield depends on the number of grains per square metre, which in turn is related to the number of fertile florets at anthesis. The dynamics of floret generation/degeneration were studied in contrasting conditions of nitrogen (N) and water availability of modern, well-adapted, durum wheats in order to understand further the bases for grain number(More)
Survival of floret primordia initiated seems critical for the determination of grain number and yield in wheat, and understanding what determines floret mortality would help in the development of more robust physiological models of yield determination. The growth of the juvenile spikes has been frequently considered the determinant of grain number, implying(More)
Recent advances in crop research have the potential to accelerate genetic gains in wheat, especially if co-ordinated with a breeding perspective. For example, improving photosynthesis by exploiting natural variation in Rubisco's catalytic rate or adopting C(4) metabolism could raise the baseline for yield potential by 50% or more. However, spike fertility(More)
In Mediterranean durum wheat production, nitrogen (N) fertilization may be important to stabilize and increase yields. Wheat yield responses to N fertilization are usually related to grains per m(2), which in turn is the consequence of processes related to floret development (floret initiation followed by floret death/survival) during stem elongation. The(More)
A better understanding of relatively simple crop-physiological attributes that determine yield in a wide range of conditions may be instrumental for assisting future breeding. Physiological traits may be selected either directly or through the use of molecular-biology tools. Physiological and breeding literature frequently distinguishes between yield under(More)
The responses to low red light/far-red light (R/FR) ratios simulating dense stands were evaluated in wheat (Triticum aestivum L) cultivars released at different times in the 20th century and consequently resulting from an increasingly prolonged breeding and selection history. While tillering responses to the R/FR ratio were unaffected by the cultivars, low(More)
Under the irregular weather that characterises Mediterranean environments, to increase yield stability in cereal crops represents an important objective for agricultural progress. In this study, a series of ®eld experiments were conducted with two-and six-rowed barley cultivars under Mediterranean conditions (southern Spain) to determine their differences(More)