Learn More
1. Neuropeptide Y (NPY) produced inhibitory effects on neurons of the thalamic reticular nucleus (RT; n = 18) and adjacent ventral basal complex (VB; n = 22), which included hyperpolarization (approximately 4 mV), a reduction in rebound and regular spikes and an increased membrane conductance. These effects were mediated predominantly via NPY1 receptor(More)
The rate constants of acetylcholine receptor channels (AChR) desensitization and recovery were estimated from the durations and frequencies of clusters of single-channel currents. Diliganded-open AChR desensitize much faster than either unliganded- or diliganded-closed AChR, which indicates that the desensitization rate constant depends on the status of the(More)
Synaptic inhibition in the thalamus plays critical roles in sensory processing and thalamocortical rhythm generation. To determine kinetic, pharmacological, and structural properties of thalamic gamma-aminobutyric acid type A (GABA(A)) receptors, we used patch-clamp techniques and single-cell reverse transcriptase polymerase chain reaction (RT-PCR) in(More)
1. The voltage dependence of binding and gating in wild-type and mutant recombinant mouse nicotinic acetylcholine receptors (AChRs) was examined at the single-channel level. 2. The closing rate constant of diliganded receptors decreased e-fold with approximately 66 mV hyperpolarization in both wild-type (adult and embryonic) and mutant receptors. The(More)
1. We have studied the kinetic properties of channel gating of recombinant alpha 1 beta 2 gamma 2L GABA(A) receptors transiently expressed in human embryonic kidney 293 cells, using the cell-attached, single-channel patch-clamp technique. The receptors were activated by GABA, beta-alanine or piperidine-4-sulfonic acid (P4S), and the effects of pentobarbital(More)
Mutagenesis and single-channel kinetic analysis were used to investigate the roles of four acetylcholine receptor channel (AChR) residues that are candidates for interacting directly with the agonist. The EC50 of the ACh dose-response curve was increased following alpha-subunit mutations Y93F and Y198F and epsilon-subunit mutations D175N and E184Q.(More)
We have studied the activation and inhibition of the mouse muscle adult-type nicotinic acetylcholine receptor by tetraethylammonium (TEA) and related quaternary ammonium derivatives. The data show that TEA is a weak agonist of the nicotinic receptor. No single-channel clusters were observed at concentrations as high as 5 mM TEA or in the presence of a(More)
Neuroactive steroids are among the most efficacious modulators of the mammalian GABA-A receptor. Previous work has proposed that receptor potentiation is mediated by steroid interactions with a site defined by the residues alpha1Asn407/Tyr410 in the M4 transmembrane domain and residue alpha1Gln241 in the M1 domain. We examined the role of residues in the(More)
Recombinant GABA(A) receptors (alpha1beta2gamma2L) were transiently expressed in HEK 293 cells. We have investigated activation and block of these receptors by pentobarbitone (PB) using cell-attached single-channel patch clamp. Clusters of single-channel activity elicited by 500 microM PB were analysed to estimate rate constants for agonist binding and(More)
We have studied the ability of the androgen etiocholanolone and its enantiomer (ent-etiocholanolone) to modulate rat alpha1beta2gamma2L GABA(A) receptor function transiently expressed in human embryonic kidney cells. Studies on steroid enantiomer pairs can yield powerful new information on the pharmacology of steroid interactions with the GABA(A) receptor.(More)