Gustaf Ahlén

Learn More
Clearance of infections caused by the hepatitis C virus (HCV) correlates with HCV-specific T cell function. We therefore evaluated therapeutic vaccination in 12 patients with chronic HCV infection. Eight patients also underwent a subsequent standard-of-care (SOC) therapy with pegylated interferon (IFN) and ribavirin. The phase I/IIa clinical trial was(More)
The hepatitis B and C viruses (HBV/HCV) are major causes for chronic liver disease globally. For HBV new antiviral compounds can suppress the viral replication for years, but off-therapy responses are rare. Current therapies based on interferon and ribavirin can cure 45-85% of the treated HCV-infected patients largely depending on the viral genotype. New(More)
A major problem in chronic hepatitis B virus (HBV) infection is that treatment with specific antivirals is life-long since they rarely induce a sustained response. An attractive option is therefore to combine antiviral therapy with some type of immune stimulator, such as a therapeutic vaccine. Several lines of evidence suggest that a key target for the(More)
UNLABELLED Tumor necrosis factor α (TNFα) has been implicated in a variety of inflammatory diseases, and anti-TNFα has been shown to improve therapy when added to standard of care in chronic hepatitis C virus (HCV) infection. In addition, patients with chronic HCV have increased serum levels of TNFα and the macrophage-attracting chemokine (C-C motif) ligand(More)
The mechanisms by which in vivo electroporation (EP) improves the potency of i.m. DNA vaccination were characterized by using the hepatitis C virus nonstructural (NS) 3/4A gene. Following a standard i.m. injection of DNA with or without in vivo EP, plasmid levels peaked immediately at the site of injection and decreased by 4 logs the first week. In vivo EP(More)
BACKGROUND The hepatitis C virus (HCV) mutates within human leucocyte antigen (HLA) class I restricted immunodominant epitopes of the non-structural (NS) 3/4A protease to escape cytotoxic T lymphocyte (CTL) recognition and promote viral persistence. However, variability is not unlimited, and sometimes almost absent, and factors that restrict viral(More)
BACKGROUND The hepatitis C virus (HCV) establishes chronic infection by incompletely understood mechanisms. The non-structural (NS) 3/4A protease/helicase has been proposed as a key complex in modulating the infected hepatocyte, although nothing is known about the effects this complex exerts in vivo. AIM To generate mice with stable and transient(More)
BACKGROUND We explored the concept of heterologous prime/boost vaccination using 2 therapeutic vaccines currently in clinical development aimed at treating chronically infected hepatitis C virus (HCV) patients: prime with a DNA-based vaccine expressing HCV genotype 1a NS3/4A proteins (ChronVac-C) and boost with a modified vaccinia virus Ankara vaccine(More)
We have recently shown that the NS3-based genetic immunogens should contain also hepatitis C virus (HCV) nonstructural (NS) 4A to utilize fully the immunogenicity of NS3. The next step was to try to enhance immunogenicity by modifying translation or mRNA synthesis. To enhance translation efficiency, a synthetic NS3/4A-based DNA (coNS3/4A-DNA) vaccine was(More)
We have investigated the ability of hepatitis C virus non-structural (NS) 3/4A-DNA-based vaccines to activate long-term cell-mediated immune responses in mice. Wild-type and synthetic codon optimized (co) NS3/4A DNA vaccines have previously been shown to be immunogenic in mice, rabbits and humans, although we have very poor knowledge about the longevity of(More)