Learn More
Abnormal splicing of LMNA gene or aberrant processing of prelamin A results in progeroid syndrome. Here we show that lamin A interacts with and activates SIRT1. SIRT1 exhibits reduced association with nuclear matrix (NM) and decreased deacetylase activity in the presence of progerin or prelamin A, leading to rapid depletion of adult stem cells (ASCs) in(More)
Skp2 E3 ligase is overexpressed in numerous human cancers and plays a critical role in cell-cycle progression, senescence, metabolism, cancer progression, and metastasis. In the present study, we identified a specific Skp2 inhibitor using high-throughput in silico screening of large and diverse chemical libraries. This Skp2 inhibitor selectively suppresses(More)
MMP14 encodes a membrane-tethered metalloproteinase MT1-MMP, capable of remodeling the extracellular matrix and modulating receptors on the cell surface. Loss of MT1-MMP results in craniofacial abnormalities. Here we show that MT1-MMP forms a complex with FGFR2 and ADAM9 in osteoblasts and proteolytically inactivates ADAM9, hence protecting FGFR2 from(More)
Notch signalling controls the differentiation of haematopoietic progenitor cells (HPCs). Here, we show that loss of membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP14), a cell surface protease expressed in bone marrow stromal cells (BMSCs), increases Notch signalling in HPCs and specifically impairs B-lymphocyte development. When co-cultured with(More)
MT1-MMP is a membrane-tethered enzyme capable of remodeling extracellular matrix. MT1-MMP-deficient mice exhibit systematic defects during development, especially in craniofacial development characterized by retarded calvarial bone formation. Recently, we identified MT1-MMP as a critical positive modulator of FGF signaling during intramembranous(More)
The regulation of RagA(GTP) is important for amino-acid-induced mTORC1 activation. Although GATOR1 complex has been identified as a negative regulator for mTORC1 by hydrolyzing RagA(GTP), how GATOR1 is recruited to RagA to attenuate mTORC1 signaling remains unclear. Moreover, how mTORC1 signaling is terminated upon amino acid stimulation is also unknown. We(More)
The tumor suppressor promyelocytic leukemia protein (PML) is located primarily in the nucleus, where it is the scaffold component of the PML nuclear bodies (PML-NBs). PML-NBs regulate multiple cellular functions, such as apoptosis, senescence, DNA damage response, and resistance to viral infection. Despite its nuclear localization, a small portion of PML(More)
Understanding the mechanism by which cell growth, migration, polyploidy, and tumorigenesis are regulated may provide important therapeutic strategies for cancer therapy. Here we identify the Skp2-macroH2A1 (mH2A1)-cyclin-dependent kinase 8 (CDK8) axis as a critical pathway for these processes, and deregulation of this pathway is associated with human breast(More)
Ubiquitination has been demonstrated to play a pivotal role in multiple biological functions, which include cell growth, proliferation, apoptosis, DNA damage response, innate immune response, and neuronal degeneration. Although the role of ubiquitination in targeting proteins for proteasome-dependent degradation have been extensively studied and(More)