Guosong Tian

Learn More
Popular wireless network standards, such as IEEE 802.11/15/16, are increasingly adopted in real-time control systems. However, they are not designed for real-time applications. Therefore, the performance of such wireless networks needs to be carefully evaluated before the systems are implemented and deployed. While efforts have been made to model general(More)
Wireless network technologies, such as IEEE 802.11 based wireless local area networks (WLANs), have been adopted in wireless networked control systems (WNCS) for real-time applications. Distributed real-time control requires satisfaction of (soft) real-time performance from the underlying networks for delivery of real-time traffic. However, IEEE 802.11(More)
As one of the most widely used wireless network technologies, IEEE 802.11 wireless local area networks (WLANs) have found a dramatically increasing number of applications in soft real-time networked control systems (NCSs). To fulfill the real-time requirements in such NCSs, most of the bandwidth of the wireless networks need to be allocated to high-priority(More)
Embedded computing systems today increasingly feature resource constraints and workload variability, which lead to uncertainty in resource availability. This raises great challenges to software design and programming in multitasking environments. In this paper, the emerging methodology of feedback scheduling is introduced to address these challenges. As a(More)
In this paper we show how to use a computer processor's time stamp counter register to provide a precise and stable time reference, via a high-precision relative clock synchronization protocol. Existing clock synchronization techniques, such as the network time protocol, were designed for wide-area networks with large propagation delays, but the(More)
Networked control systems (NCSs) offer many advantages over conventional control; however, they also demonstrate challenging problems such as network-induced delay and packet losses. This paper proposes an approach of predictive compensation for simultaneous networkinduced delays and packet losses. Different from the majority of existing NCS control(More)
Discrete event-driven simulations of digital communication networks have been used widely. However, it is difficult to use a network simulator to simulate a hybrid system in which some objects are not discrete event-driven but are continuous time-driven. A networked control system (NCS) is such an application, in which physical process dynamics are(More)
Deploying networked control systems (NCSs) over wireless networks is becoming more and more popular. However, the widely-used transport layer protocols, Transmission Control Protocol (TCP) and User Datagram Protocol (UDP), are not designed for real-time applications. Therefore, they may not be suitable for many NCS application scenarios because of their(More)
Wireless networked control systems (WNCSs) have been increasingly deployed in industrial applications. As they require timely data packet transmissions, it is difficult to make efficient use of the limited channel resources, particularly in contention based wireless networks in the layered network architecture. Aiming to maintain the WNCSs under critical(More)