Learn More
Recent advances in semantic image segmentation have mostly been achieved by training deep convolutional neural networks (CNNs). We show how to improve semantic segmentation through the use of contextual information, specifically, we explore 'patch-patch' context between image regions, and 'patch-background' context. For learning from the patch-patch(More)
Supervised hashing aims to map the original features to compact binary codes that are able to preserve label based similarity in the Hamming space. Non-linear hash functions have demonstrated their advantage over linear ones due to their powerful generalization capability. In the literature, kernel functions are typically used to achieve non-linearity in(More)
We consider the problem of depth estimation from a single monocular image in this work. It is a challenging task as no reliable depth cues are available, e.g., stereo correspondences, motions etc. Previous efforts have been focusing on exploiting geometric priors or additional sources of information, with all using hand-crafted features. Recently, there is(More)
Recently, very deep convolutional neural networks (CNNs) have shown outstanding performance in object recognition and have also been the first choice for dense classification problems such as semantic segmentation. However, repeated subsampling operations like pooling or convolution striding in deep CNNs lead to a significant decrease in the initial image(More)
Most existing approaches to hashing apply a single form of hash function, and an optimization process which is typically deeply coupled to this specific form. This tight coupling restricts the flexibility of the method to respond to the data, and can result in complex optimization problems that are difficult to solve. Here we propose a flexible yet simple(More)
In this article, we tackle the problem of depth estimation from single monocular images. Compared with depth estimation using multiple images such as stereo depth perception, depth from monocular images is much more challenging. Prior work typically focuses on exploiting geometric priors or additional sources of information, most using hand-crafted(More)
To study the biologic role of migration inhibitory factor (MIF), a pleiotropic cytokine, we generated a mouse strain lacking MIF by gene targeting in embryonic stem cells. Analysis of the role of MIF during sepsis showed that MIF-/- mice were resistant to the lethal effects of high dose bacterial lipopolysaccharide (LPS), or Staphylococcus aureus(More)
Fast nearest neighbor searching is becoming an increasingly important tool in solving many large-scale problems. Recently a number of approaches to learning data-dependent hash functions have been developed. In this work, we propose a column generation based method for learning data-dependent hash functions on the basis of proximity comparison information.(More)
To build large-scale query-by-example image retrieval systems, embedding image features into a binary Hamming space provides great benefits. Supervised hashing aims to map the original features to compact binary codes that are able to preserve label based similarity in the binary Hamming space. Most existing approaches apply a single form of hash function,(More)
A model of lung eosinophilia based on the repeated exposure of mice to aerosolized OVA has been used to identify C-C chemokine genes expressed at stages of massive eosinophil infiltration. We describe the identification and cloning of a cDNA that encodes a mouse C-C chemokine with 68% amino acid identity to guinea pig Eotaxin. The recombinant protein(More)