Guorui Yan

Learn More
Three dimension Computed Tomography (CT) reconstruction is computationally demanding. To accelerate the speed of reconstruction, Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA) has been used, but they are expensive, inflexible and not easy to upgrade. The modern Graphics Processing Unit (GPU) with its programmable(More)
Katsevich reconstruction algorithm represents a breakthrough for helical cone-beam computed tomography (CT) reconstruction, because it is the first exact cone-beam reconstruction algorithm of filtered backprojection (FBP) type with 1-D shift-invariant filtering. Although FBP-type reconstruction algorithm is effective, 3-D CT reconstruction is(More)
A prototype cone-beam micro-CT system for small animal imaging has been developed by our group recently, which consists of a microfocus X-ray source, a three-dimensional programmable stage with object holder, and a flat-panel X-ray detector. It has a large field of view (FOV), which can acquire the whole body imaging of a normal-size mouse in a single scan(More)
Visualized freehand 3-D ultrasound reconstruction offers to image incremental reconstruction during acquisition and guide users to scan interactively for high-quality volumes. We originally used the graphics processing unit (GPU) to develop a visualized reconstruction algorithm that achieves real-time level. Each newly acquired image was transferred to the(More)
In robotic drilling of aircraft structures, reference holes are pre-drilled on aircraft structures and then detected by vision systems in the drilling process to compensate for the relative positioning errors between the robot tool center point and the workpiece, thus achieving improved position accuracy of drilled holes. In this paper, a novel elliptic(More)
Robotic drilling for aerospace structures demands a high positioning accuracy of the robot, which is usually achieved through error measurement and compensation. In this paper, we report the development of a practical monocular vision system for measurement of the relative error between the drill tool center point (TCP) and the reference hole. First, the(More)
  • 1