Learn More
Many studies have shown that primary prostate cancers are multifocal and are composed of multiple genetically distinct cancer cell clones. Whether or not multiclonal primary prostate cancers typically give rise to multiclonal or monoclonal prostate cancer metastases is largely unknown, although studies at single chromosomal loci are consistent with the(More)
A new approach based on Bayesian networks for traffic flow forecasting is proposed. In this paper, traffic flows among adjacent road links in a transportation network are modeled as a Bayesian network. The joint probability distribution between the cause nodes (data utilized for forecasting) and the effect node (data to be forecasted) in a constructed(More)
We combine diffuse optical and correlation spectroscopies to simultaneously measure the oxyhemoglobin and deoxyhemoglobin concentration and blood flow in an adult human brain during sensorimotor stimulation. The observations permit calculation of the relative cerebral metabolic rate of oxygen in the human brain, for the first time to our knowledge, by use(More)
Diffuse optics has proven useful for quantitative assessment of tissue oxy- and deoxyhaemoglobin concentrations and, more recently, for measurement of microvascular blood flow. In this paper, we focus on the flow monitoring technique: diffuse correlation spectroscopy (DCS). Representative clinical and pre-clinical studies from our laboratory illustrate the(More)
PURPOSE To monitor tumor blood flow noninvasively during photodynamic therapy (PDT) and to correlate flow responses with therapeutic efficacy. EXPERIMENTAL DESIGN Diffuse correlation spectroscopy (DCS) was used to measure blood flow continuously in radiation-induced fibrosarcoma murine tumors during Photofrin (5 mg/kg)/PDT (75 mW/cm2, 135 J/cm2). Relative(More)
We have employed near-infrared optical methods to measure noninvasively the dynamics of muscle blood flow and oxygen saturation (StO2) during cuff occlusion and plantar flexion exercise. Relative muscle oxygen consumption (rVO2) was also computed from these data. Diffuse correlation spectroscopy provides information about blood flow, and diffuse reflectance(More)
Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and(More)
Laser-speckle flowmetry was used to characterize activation flow coupling after electrical somatosensory stimulation of forepaw and hindpaw in the rat. Quantification of functional activation was made with high transverse spatial (microm) and temporal (msec) resolution. Different activation levels and duration of stimulation were quantitatively(More)
MOTIVATION In both genome-wide association studies (GWAS) and pathway analysis, the modest sample size relative to the number of genetic markers presents formidable computational, statistical and methodological challenges for accurately identifying markers/interactions and for building phenotype-predictive models. RESULTS We address these objectives via(More)
Genome-wide association studies (GWAS) have been widely applied to identify informative SNPs associated with common and complex diseases. Besides single-SNP analysis, the interaction between SNPs is believed to play an important role in disease risk due to the complex networking of genetic regulations. While many approaches have been proposed for detecting(More)