Learn More
Data-intensive applications that operate on large volumes of data have motivated a fresh look at the design of data center networks. The first wave of proposals focused on designing pure packet-switched networks that provide full bisection bandwidth. However, these proposals significantly increase network complexity in terms of the number of links and(More)
Cloud computing services allow users to lease computing resources from large scale data centers operated by service providers. Using cloud services, users can deploy a wide variety of applications dynamically and on-demand. Most cloud service providers use machine virtualization to provide flexible and costeffective resource sharing. However, few studies(More)
Many distributed systems rely on neighbor selection mechanisms to create overlay structures that have good network performance. These neighbor selection mechanisms often assume the triangle inequality holds for Internet delays. However, the reality is that the triangle inequality is violated by Internet delays. This phenomenon creates astrange environment(More)
Understanding the characteristics of the Internet delay space (i.e., the all-pairs set of static round-trip propagation delays among edge networks in the Internet) is important for the design of global-scale distributed systems. For instance, algorithms used in overlay networks are often sensitive to violations of the triangle inequality and to the growth(More)
Large-scale (or massive) multiple-input multiple-out put (MIMO) is expected to be one of the key technologies in next-generation multi-user cellular systems based on the upcoming 3GPP LTE Release 12 standard, for example. In this work, we propose-to the best of our knowledge-the first VLSI design enabling high-throughput data detection in single-carrier(More)
Recent advances of software defined networking and optical switching technology make it possible to program the network stack all the way from physical topology to flow level traffic control. In this paper, we leverage the combination of SDN controller with optical switching to explore the tight integration of application and network control. We(More)
In this paper, we present a high throughput and low latency LDPC (low-density parity-check) decoder implementation on GPUs (graphics processing units). The existing GPU-based LDPC decoder implementations suffer from low throughput and long latency, which prevent them from being used in practical SDR (software-defined radio) systems. To overcome this(More)
The graphics processor unit (GPU) is able to provide a low-cost and flexible software-based multi-core architecture for high performance computing. However, it is still very challenging to efficiently map the real-world applications to GPU and fully utilize the computational power of GPU. As a case study, we present a GPU-based implementation of a(More)
Recent proposals to build hybrid electrical (packet-switched) and optical (circuit switched) data center interconnects promise to reduce the cost, complexity, and energy requirements of very large data center networks. Supporting realistic traffic patterns, however, exposes a number of unexpected and difficult challenges to actually deploying these systems(More)
Since its inception, the concept of network coordinates has been proposed to solve a wide variety of problems such as overlay optimization, network routing, network localization, and network modeling. However, two practical problems significantly limit the applications of network coordinates today. First, how can network coordinates be stabilized without(More)