Learn More
Plant sensing of invading pathogens triggers massive metabolic reprogramming, including the induction of secondary antimicrobial compounds known as phytoalexins. We recently reported that MPK3 and MPK6, two pathogen-responsive mitogen-activated protein kinases, play essential roles in the induction of camalexin, the major phytoalexin in Arabidopsis(More)
Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive(More)
Plants challenged by pathogens, especially necrotrophic fungi such as Botrytis cinerea, produce high levels of ethylene. At present, the signaling pathways underlying the induction of ethylene after pathogen infection are largely unknown. MPK6, an Arabidopsis stress-responsive mitogen-activated protein kinase (MAPK) was previously shown to regulate the(More)
Lipid transfer proteins in plants are believed to be involved in many processes of cell physiology and development. In this work, a full-length cDNA encoding a novel lipid transfer protein, designated BcLTP was isolated from Brassica chinensis. At least two copies of BcLTP are present in whole genome of B. chinensis, and its transcripts preferably(More)
Sulfurtransferases (STRs) catalyze the transfer of a sulfur atom from a donor to a suitable acceptor molecule. The Arabidopsis thaliana genome encodes 20 putative STR proteins. The biological functions of most are unclear. We found that STR1 and STR2 play important roles in embryo/seed development. Mutation of STR1 alone resulted in a shrunken seed(More)
  • 1