Learn More
A novel polarized light-guide plate (LGP) for the illumination of liquid crystal display is proposed in this paper. For the substrate of the LGP, stress-induced birefringence is introduced to achieve the polarization state conversion. An aluminum sub-wavelength grating (SWG) is designed on the top surface as a polarizing beam-splitter (PBS). The structure(More)
Benefitting from the flexibility in engineering their optical response, metamaterials have been used to achieve control over the propagation of light to an unprecedented level, leading to highly unconventional and versatile optical functionalities compared with their natural counterparts. Recently, the emerging field of metasurfaces, which consist of a(More)
Surface topography and refractive index profile dictate the deterministic functionality of a lens. The polarity of most lenses reported so far, that is, either positive (convex) or negative (concave), depends on the curvatures of the interfaces. Here we experimentally demonstrate a counter-intuitive dual-polarity flat lens based on helicity-dependent phase(More)
The development of the dual-band IR imaging polarimetry creates the need for achromatic phase retarder used in dual-band. Dielectric grating with the period smaller than the illuminating wavelength presents a strong form-birefringence. With this feature, the combination of several subwavelength gratings can be used as achromatic phase retarders. We proposed(More)
Ultrathin metasurfaces consisting of a monolayer of subwavelength plasmonic resonators are capable of generating local abrupt phase changes and can be used for controlling the wavefront of electromagnetic waves. The phase change occurs for transmitted or reflected wave components whose polarization is orthogonal to that of a linearly polarized (LP) incident(More)
A novel infrared (IR) and visible image fusion method based on nonsubsampled contourlet transform (NSCT) and fuzzy logic is proposed. Input IR and visible images are decomposed into a series of low frequency and high frequency subbands by using NSCT. The degree of membership to the background and the target for each pixel in the low frequency subband of the(More)
A micro displacement sensor and its sensing technique based on line-defect resonant cavity in photonic crystals (PhCs) are presented. The line-defect resonant cavity is formed by a fixed and a mobile PhC segments. With a proper operating frequency, a quasi-linear measurement of micro-displacement is achieved with sensitivity of 1.15 a(-1) ( a is the lattice(More)
Free-form surfaces (FFSs) provide more freedom to design an optical system with fewer elements and hence to reduce the size and weight of the overall system than rotationally symmetric optical surfaces. In this paper, an optical see-through (OST), head-mounted display (HMD) consisting of a free-form, wedge-shaped prism and a free-form lens is designed and(More)
Theories to design a three-dimensional superresolution filter (TDSF) for confocal microscopy are proposed that can obtain a globally optimal solution through linear programming. The designed TDSF is proved to be a phase-only element introducing a phase delay of 0 or pi. Five design examples of the TDSF are presented to demonstrate the validity of these(More)