Guo-Song Jiang

Learn More
AIM To investigate the mechanisms underlying the inhibitory effect of gambogic acid (GA) on TNF-α-induced metastasis of human prostate cancer PC3 cells in vitro. METHODS TNF-α-mediated migration and invasion of PC3 cells was examined using migration and invasion assays, respectively. NF-κB transcriptional activity and nuclear translocation were analyzed(More)
Inactivation of human SET domain containing protein 2 (SETD2) is a common event in clear cell renal cell carcinoma (ccRCC). However, the mechanism underlying loss of SETD2 function, particularly the post-transcriptional regulatory mechanism, still remains unclear. In the present study, we found that SETD2 was downregulated and inversely correlated with high(More)
Heparanase (HPA), an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in human cells. In this study, transfection of siRNA against -9/+10 bp (siH3), but not(More)
BACKGROUND Heparanase facilitates the invasion and metastasis of cancer cells, and is over-expressed in many kinds of malignancies. Our studies indicated that heparanase was frequently expressed in advanced gastric cancers. The aim of this study is to determine whether silencing of heparanase expression can abolish the malignant characteristics of gastric(More)
Hypoxia has been involved in the development of tumor by regulating the expression of invasiveness-associated genes. However, the specific function of hypoxia in cancer cell invasion is still unclear. The aim of the present study was to determine the role of hypoxia in invasion of prostate cancer PC3 cells and to investigate the underlying mechanisms. We(More)
BACKGROUND Glioblastoma (GBM) is the most common malignant brain tumor, and glioma stem cells (GSCs) are considered a major source of treatment resistance for glioblastoma. Identifying new compounds that inhibit the growth of GSCs and understanding their underlying molecular mechanisms are therefore important for developing novel therapy for GBM. METHODS(More)
  • 1