Learn More
Mammalian Toll-like receptors (TLRs) 3, 7, 8 and 9 initiate immune responses to infection by recognizing microbial nucleic acids; however, these responses come at the cost of potential autoimmunity owing to inappropriate recognition of self nucleic acids. The localization of TLR9 and TLR7 to intracellular compartments seems to have a role in facilitating(More)
The major histocompatibility complex (MHC) class II-associated invariant chain (Ii) regulates intracellular trafficking and peptide loading of MHC class II molecules. Such loading occurs after endosomal degradation of the invariant chain to a approximately 3-kD peptide termed CLIP (class II-associated invariant chain peptide). Cathepsins L and S have both(More)
Although mast cell functions have classically been related to allergic responses, recent studies indicate that these cells contribute to other common diseases such as multiple sclerosis, rheumatoid arthritis, atherosclerosis, aortic aneurysm and cancer. This study presents evidence that mast cells also contribute to diet-induced obesity and diabetes. For(More)
Fatty acid binding protein 4 (FABP4) plays an important role in regulation of glucose and lipid homeostasis as well as inflammation through its actions in adipocytes and macrophages. FABP4 is also expressed in a subset of endothelial cells, but its role in this cell type is not known. We found that FABP4-deficient human umbilical vein endothelial cells(More)
Atherosclerosis is an inflammatory disease characterized by extensive remodeling of the extracellular matrix architecture of the arterial wall. Although matrix metalloproteinases and serine proteases participate in these pathologic events, recent data from atherosclerotic patients and animals suggest the participation of lysosomal cysteine proteases in(More)
Before a class II molecule can be loaded with antigenic material and reach the surface to engage CD4+ T cells, its chaperone, the class II-associated invariant chain (Ii), is degraded in a stepwise fashion by proteases in endocytic compartments. We have dissected the role of cathepsin S (CatS) in the trafficking and maturation of class II molecules by(More)
Abdominal aortic aneurysm (AAA), an inflammatory disease, involves leukocyte recruitment, immune responses, inflammatory cytokine production, vascular remodeling, neovascularization, and vascular cell apoptosis, all of which contribute to aortic dilatation. This study demonstrates that mast cells, key participants in human allergic immunity, participate in(More)
BACKGROUND Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors,(More)
The pathogenesis of atherosclerosis and abdominal aortic aneurysm involves substantial proteolysis of the arterial extracellular matrix. The lysosomal cysteine proteases can exert potent elastolytic and collagenolytic activity. Human atherosclerotic plaques have increased cysteine protease content and decreased levels of the endogenous inhibitor cystatin C,(More)
Immunoglobulin E (IgE) activates mast cells (MCs). It remains unknown whether IgE also activates other inflammatory cells, and contributes to the pathogenesis of abdominal aortic aneurysms (AAAs). This study demonstrates that CD4+ T cells express IgE receptor FcεR1, at much higher levels than do CD8+ T cells. IgE induces CD4+ T-cell production of IL6 and(More)