Gunnar Schley

Learn More
Acute kidney injury (AKI) is a frequent complication of sepsis, major surgery or nephrotoxic medication use. It is associated with high morbidity and mortality. In an effort to identify novel biomarkers capable of predicting the development of AKI after cardiac surgery with cardiopulmonary bypass use, urine specimens were collected before and at 4 and 24 h(More)
BACKGROUND Hepcidin is a major regulator of iron metabolism and plays a key role in anemia of chronic disease, reducing intestinal iron uptake and release from body iron stores. Hypoxia and chemical stabilizers of the hypoxia-inducible transcription factor (HIF) have been shown to suppress hepcidin expression. We therefore investigated the role of HIF in(More)
The Wilms' tumor gene Wt1 is unique among tumor suppressors because of its requirement for the development of certain organs. We recently described de novo expression of Wt1 in myocardial blood vessels of ischemic rat hearts. The purpose of this study was to analyze the mechanism(s) of hypoxic/ischemic induction of Wt1. We show here that Wt1 mRNA and(More)
We have demonstrated recently that Wilms' tumor suppressor 1 (Wt1),in addition to its role in genitourinary formation,is required for the differentiation of ganglion cells in the developing retina. Here we provide further evidence that Wt1 is associated with neuronal differentiation. Thus, the retinoblastoma-derived human cell line, Y-79, contained robust(More)
Reduced nephron number predisposes to hypertension and kidney disease. Interaction of the branching ureteric bud and surrounding mesenchymal cells determines nephron number. Since oxygen supply may be critical for intrauterine development, we tested whether hypoxia and hypoxia-inducible factor-1α (HIF-1α) influence nephrogenesis. We found that HIF-1α is(More)
The Wilms' tumor gene Wt1 encodes a zinc finger protein, which is required for normal formation of the genitourinary system and mesothelial tissues. Our recent findings indicate that Wt1 also plays a critical role in the development of ganglion cells in the vertebrate retina. Here we show that the POU-domain factor Pou4f2 (formerly Brn-3b), which is(More)
Hypoxia-inducible transcription factors (HIFs) control cellular adaptation to low oxygen. In the kidney, activation of HIF is beneficial during injury; however, the specific contribution of HIF-1α in renal endothelial cells (EC) remains elusive. Since EC display tissue-specific heterogeneity, we investigated how HIF-1α affects key functions of glomerular EC(More)
Both hypoxic and inflammatory conditions activate transcription factors such as hypoxia-inducible factor (HIF)-1α and nuclear factor (NF)-κB, which play a crucial role in adaptive responses to these challenges. In dendritic cells (DC), lipopolysaccharide (LPS)-induced HIF1α accumulation requires NF-κB signaling and promotes inflammatory DC function. The(More)
Polycystic kidney diseases are characterized by the development of numerous bilateral renal cysts that continuously enlarge resulting in a decline of kidney function due to compression of intact nephrons. Cyst growth is driven by transepithelial chloride secretion which depends on both intracellular cAMP and calcium. Mechanisms that are involved in the(More)
The Hypoxia-inducible transcription Factor (HIF) represents an important adaptive mechanism under hypoxia, whereas sustained activation may also have deleterious effects. HIF activity is determined by the oxygen regulated α-subunits HIF-1α or HIF-2α. Both are regulated by oxygen dependent degradation, which is controlled by the tumor suppressor "von(More)