Gunnar Brix

Learn More
The purpose of this study is to evaluate the identifiability of physiological tissue parameters by pharmacokinetic modeling of concentration-time curves derived under conditions that are realistic for dynamic-contrast-enhanced (DCE) imaging and to assess the information-theoretic approach of multimodel inference using nested models. Tissue curves with a(More)
Concentration-time courses measured by dynamic contrast-enhanced (DCE) imaging can be described by a convolution of the arterial input with an impulse response function, Q(T)(t), characterizing tissue microcirculation. Data analysis is based on two different approaches: computation of Q(T)(t) by algebraic deconvolution (AD) and subsequent evaluation(More)
The aim of the present study was a detailed analysis of the regional cerebral blood flow and blood volume in patients with subcortical arteriosclerotic encephalopathy (SAE) by means of functional magnetic resonance imaging (MRI). A group of 26 patients with SAE and a group of 16 age-matched healthy volunteers were examined. Using a well-established dynamic(More)
  • 1