Gungor Ozer

Learn More
The chromatin fiber undergoes significant structural changes during the cell's life cycle to modulate DNA accessibility. Detailed mechanisms of such structural transformations of chromatin fibers as affected by various internal and external conditions such as the ionic conditions of the medium, the linker DNA length, and the presence of linker histones,(More)
Neuropeptide Y (NPY) has been found to adopt two stable conformations in vivo: (1) a monomeric form called the PP-fold in which a polyproline tail is folded onto an α-helix via a β-turn and (2) a dimeric form of the unfolded proteins in which the α-helices interact with each other via side chains. The transition pathway and rates between the two(More)
The potential of mean force (PMF) for stretching decaalanine in vacuum was determined earlier by Park and Schulten [J. Chem. Phys. 120, 5946 (2004)] in a landmark article demonstrating the efficacy of combining steered molecular dynamics and Jarzynski's nonequilibrium relation. In this study, the recently developed adaptive steered molecular dynamics (ASMD)(More)
The structure of chromatin, affected by many factors from DNA linker lengths to posttranslational modifications, is crucial to the regulation of eukaryotic cells. Combined experimental and computational methods have led to new insights into its structural and dynamical features, from interactions due to the flexible core histone tails or linker histones to(More)
Eukaryotic cells condense their genetic material in the nucleus in the form of chromatin, a macromolecular complex made of DNA and multiple proteins. The structure of chromatin is intimately connected to the regulation of all eukaryotic organisms, from amoebas to humans, but its organization remains largely unknown. The nucleosome repeat length (NRL) and(More)
  • 1