Learn More
BACKGROUND Hirschsprung disease (HSCR) is a neurocristopathy characterized by absence of intramural ganglion cells along variable lengths of the gastrointestinal tract in neonates. Three polymorphisms, rs2435357, within a conserved transcriptional enhancer of RET, and, rs7835688 and rs16879552, within intron 1 of NRG1, have been shown to be associated with(More)
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder that is caused by loss of the survival motor neuron gene, SMN1. SMA treatment strategies have focused on production of the SMN protein from the almost identical gene, SMN2. Valproic acid (VPA) is a histone deacetylase inhibitor that can increase SMN levels in some SMA cells(More)
BACKGROUND Severe myoclonic epilepsy in infancy (SMEI) and borderline SMEI (SMEB) are caused by a mutation in SCN1A, which encodes a voltage-gated sodium channel alpha1-subunit protein. Although many mutations in SCN1A have been associated with clinical features of SMEI or SMEB from different ethnic groups, there have been no such reports from the(More)
Although most patients with spinal muscular atrophy (SMA) are homozygous for deletion of the SMN1 gene, some patients bear one SMN1 copy with a subtle mutation. Detection of such an intragenic mutation may be helpful not only in confirming diagnosis but also in elucidating functional domains of the SMN protein. In this study, we identified a novel mutation(More)
The uridine diphosphoglucuronate-glucuronosyltransferase 1A1 (UGT1A1) gene encodes the enzyme responsible for bilirubin glucuronidation. To evaluate the contribution of UGT1A1 promoter mutations to neonatal jaundice, we determined the genotypes of c.-3279T>G, c.-3156G>A, and A(TA)7TAA in Malay infants with neonatal jaundice (patients) and in infants without(More)
BACKGROUND The SMN1 gene is now recognized as a spinal muscular atrophy (SMA)-causing gene, while SMN2 and NAIP have been characterized as a modifying factor of the clinical severity of SMA. Gene dosage of SMN2 is associated with clinical severity of SMA. But the relationship between gene dosage of NAIP and clinical severity of SMA remains to be clarified,(More)
Mowat-Wilson syndrome (MWS) is a multiple congenital anomaly-mental retardation complex caused by mutations in the Zinc Finger Homeobox 1 B gene (ZFHX1B). MWS has been reported in association with Hirschsprung disease (HSCR). MWS is sometimes difficult to diagnose clinically, especially when HSCR is absent. Thus, it is necessary to detect gene abnormalities(More)
The specification of neuronal subtypes in the cerebral cortex proceeds in a temporal manner; however, the regulation of the transitions between the sequentially generated subtypes is poorly understood. Here, we report that the forkhead box transcription factor Foxg1 coordinates the production of neocortical projection neurons through the global repression(More)
BACKGROUND Gastroschisis is a developmental disorder involving the extrusion of fetal intestines through a defect in the abdominal wall. The mechanism is presumed to be a dual vascular/thrombotic pathogenesis, where normal right umbilical vein involution forms a possible site for thrombosis adjacent to the umbilical ring. PURPOSE The aim of this study was(More)
Our previous observation of a higher incidence of FLT3-ITD in DR(-) M1/M2 AML than in DR(+) M1/M2 led to an investigation of NPM1 mutation in the same samples, since DR(-) AML and AML with NPM1 mutation share such characteristics as normal karyotype, the absence of CD34, and FLT3-ITD. NPM1 mutation was found in 18 of 26 (69.2%) of DR(-) cases, but not in(More)