Gul Zaman

3Andrew Sunters
3Lance E. Lanyon
3Joanna S. Price
Learn More
Almost all mathematical models of diseases start from the same basic premise: the population can be subdivided into a set of distinct classes dependent upon experience with respect to the relevant disease. Most of these models classify individuals as either a susceptible individual S, infected individual I or recovered individual R. This is called the(More)
  • Gabriel L. Galea, Andrew Sunters, Lee B. Meakin, Gul Zaman, Toshihiro Sugiyama, Lance E. Lanyon +1 other
  • 2011
Sclerostin is a potent inhibitor of bone formation which is down-regulated by mechanical loading. To investigate the mechanisms involved we subjected Saos2 human osteoblastic cells to short periods of dynamic strain and used quantitative reverse transcriptase polymerase chain reaction to compare their responses to unstrained controls. Strain-induced Sost(More)
  • Gul Zaman, Leanne K. Saxon, Andrew Sunters, Helen Hilton, Peter Underhill, Debbie Williams +2 others
  • 2010
Loading-related changes in gene expression in resident cells in the tibia of female mice in the contexts of normality (WT), estrogen deficiency (WT-OVX), absence of estrogen receptor alpha (ERalpha(-/-)) and disuse due to sciatic neurectomy (WT-SN) were established by microarray. Total RNA was extracted from loaded and contra-lateral non-loaded tibiae at(More)
In this paper the optimal control strategies of an SIR (susceptible-infected-recovered) epidemic model with time delay are introduced. In order to do this, we consider an optimally controlled SIR epidemic model with time delay where a control means treatment for infectious hosts. We use optimal control approach to minimize the probability that the infected(More)
An existing model is extended to assess the impact of some antimalaria control measures, by re-formulating the model as an optimal control problem. This paper investigates the fundamental role of three type of controls, personal protection, treatment, and mosquito reduction strategies in controlling the malaria. We work in the nonlinear optimal control(More)
  • Alaa Moustafa, Toshihiro Sugiyama, Leanne K. Saxon, Gul Zaman, Andrew Sunters, Victoria J. Armstrong +3 others
  • 2009
Bones' functionally adaptive responses to mechanical loading can usefully be studied in the tibia by the application of loads between the knee and ankle in normal and genetically modified mice. Such loading also deforms the fibula. Our present study was designed to ascertain whether the fibula adapts to loading in a similar way to the tibia and could thus(More)
We present the prevention of avian influenza pandemic by adjusting multiple control functions in the human-to-human transmittable avian influenza model. First we show the existence of the optimal control problem; then by using both analytical and numerical techniques, we investigate the cost-effective control effects for the prevention of transmission of(More)
The paper presents the vector-host disease with a variability in population. We assume, the disease is fatal and for some cases the infected individuals become susceptible. We first show the local and global stability of the disease-free equilibrium, for the case when R 0 < 1. We also show that for R 0 < 1, the disease free-equilibrium of the model is both(More)