Learn More
Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these(More)
The use of RNA interference (RNAi) has enabled loss-of-function studies in mammalian cancer cells and has hence become critical for identifying and validating cancer drug targets. Current transient siRNA and stable shRNA systems, however, have limited utility in accurately assessing the cancer dependency due to their short-lived effects and limited in vivo(More)
Multiple therapeutic agonists of death receptor 5 (DR5) have been developed and are under clinical evaluation. Although these agonists demonstrate significant anti-tumor activity in preclinical models, the clinical efficacy in human cancer patients has been notably disappointing. One possible explanation might be that the current classes of therapeutic(More)
5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability(More)
Cancer cells rely on aerobic glycolysis to maintain cell growth and proliferation via the Warburg effect. Phosphoglycerate dehydrogenase (PHDGH) catalyzes the first step of the serine biosynthetic pathway downstream of glycolysis, which is a metabolic gatekeeper both for macromolecular biosynthesis and serine-dependent DNA synthesis. Here, we report that(More)
The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple(More)
Diabetic nephropathy (DN) is characterized by proliferation of mesangial cells, mesangial hypertrophy and extracellular matrix (ECM) accumulation. Our recent study found that andrographolide inhibited high glucose-induced mesangial cell proliferation and fibronectin expression through inhibition of AP-1 pathway. However, whether andrographolide has(More)
Wnts have been implicated in metanephric kidney development. To determine whether Frizzleds, the genes that encode Wnt receptors, are present at early stages of nephrogenesis, we examined the expression of several recently identified Frizzled genes in the chick by in situ hybridization. Here we report the cloning and characterization of chick Frizzled-4(More)
D-type cyclins (D1, D2 and D3) and their associated cyclin-dependent kinases (CDK4 and CDK6) are components of the core cell cycle machinery that drives cell proliferation. Inhibitors of CDK4 and CDK6 are currently being tested in clinical trials for patients with several cancer types, with promising results. Here, using human cancer cells and(More)
Connectionist Central Pattern Generator models (CCPG) are helpful to understand how the CPG neural mechanism functions, and have relatively small complexity which makes them suitable for controlling snake-like robots. However, there are few CCPG models are constructed to generate the snake-like robot's three-dimensional gaits, which are important for(More)