Guiying Wang

Learn More
Embryonic stem cells (ESCs) enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF), which maintains the self-renewal capability of mouse ESCs (mESCs), significantly(More)
The mechanisms by which microRNAs (miRNAs) affect cell fate decisions remain poorly understood. Herein, we report that miR-200a can suppress the differentiation of mouse embryonic stem (ES) cells into endoderm and mesoderm. Interestingly, miR-200a directly targets growth factor receptor-bound protein 2 (Grb2), which is a key adaptor in the Erk signaling(More)
BACKGROUND The -160C/A polymorphism (rs16260) of E-cadherin, a tumor repressor gene, has been shown to be a tumor susceptibility allele for various types of cancers. Because the significance of this polymorphism to cancer risk has been recognized, there are increasing studies investigating -160C/A in different types of cancers and ethnic populations.(More)
Cell migration plays major roles in human breast cancer-related death, but the molecular mechanisms remain unclear. Valproic acid (VPA) is a broad-spectrum inhibitor of class I and II histone deacetylases and shows great anticancer activity in a variety of human cancers including breast cancer. In this study, we found that VPA significantly inhibited cell(More)
Induced pluripotent stem (iPS) cells were first generated by forced expression of transcription factors (TFs) in fibroblasts. Recently, iPS cells have been generated more rapidly and efficiently using miRNAs with or without other transcription factors. However, the specific and collaborative roles of miRNAs and transcription factors in pluripotency(More)
Recently, the debate on the centrality-lethality rule is resolved by the "second-generation" high-throughput Y2H data from the yeast interactome network, which suggests no significant correlation between the degree of connectedness and essentiality of proteins. However, it is still not clear why essential proteins strongly tend to interact with each other.(More)
Chronic myeloid leukemia (CML) is a hematopoi-etic stem cell disease caused by the oncoprotein BCR-ABL, which exhibits a constitutive tyrosine kinase activity. Imatinib mesylate (IM), an inhibitor of the tyrosine kinase activity of BCR-ABL, has been used as a first-line therapy for CML. However, IM is less effective in the accelerated phase and blastic(More)
Sirt2, a member of the NAD(+)-dependent protein deacetylase family, is increasingly recognized as a critical regulator of the cell cycle, cellular necrosis and cytoskeleton organization. However, its role in embryonic stem cells (ESCs) remains unclear. Here we demonstrate that Sirt2 is up-regulated during RA (retinoic acid)-induced and embryoid body (EB)(More)
The maturation of induced pluripotent stem cells (iPS) is one of the limiting steps of somatic cell reprogramming, but the underlying mechanism is largely unknown. Here, we reported that knockdown of histone deacetylase 2 (HDAC2) specifically promoted the maturation of iPS cells. Further studies showed that HDAC2 knockdown significantly increased histone(More)
DNA methylation and histone methylation (H3K27me3) have been reported as major barriers to induced pluripotent stem cell (iPSC) generation using four core transcription factors (Oct4, Sox2, Klf4, and c-Myc, termed OSKM). Here, to illustrate the possibility of deriving iPSCs via demethylation, as well as the exact effects of DNA methylation and histone(More)