Learn More
Anisotropic Fe3 O4 octahedrons are obtained via a simple solvothermal synthesis with appropriate sizes for various technological applications. A complete suite of materials characterization methods confirms the magnetite phase for these structures, which exhibit substantial saturation magnetization and intriguing morphologies for a wide range of(More)
While the assembled 1D magnetic nanoparticle (NP) chains have demonstrated synergistic magnetic effects from the individual NPs, it is essential to prepare new 1D NP chains that can combine the magnetism with other important material properties for multifunctional applications. This paper reports the fabrication and multifunctional investigation of a new(More)
This paper reports a type of multifunctional hybrid nanoparticle (NP) composed of gold nanocrystals coated on and/or embedded in a magnetite-fluorescent porous carbon core-shell NP template (Fe3O4@PC-CDs-Au) for biomedical applications, including magnetic/NIR-responsive drug release, multicolor cell imaging, and enhanced photothermal therapy. The synthesis(More)
Particularly in Sr2IrO4, the interplay between spin-orbit coupling, bandwidth and on-site Coulomb repulsion stabilizes a J(eff) = 1/2 spin-orbital entangled insulating state at low temperatures. Whether this insulating phase is Mott- or Slater-type, has been under intense debate. We address this issue via spatially resolved imaging and spectroscopic studies(More)
A simple and facile synthetic strategy is developed to prepare a new class of multifunctional hybrid nanoparticles (NPs) that can integrate a magnetic core with silver nanocrystals embedded in porous carbon shell. The method involves a one-step solvothermal synthesis of Fe3O4@C template NPs with Fe3O4nanocrystals in the core protected by a porous carbon(More)
We report the synthesis of single-crystal iron germanium nanowires via chemical vapor deposition without the assistance of any catalysts. The assembly of single-crystal FeGe2 nanowires with tetragonal C16 crystal structure shows anisotropic magnetic behavior along the radial direction or the growth axial direction, with both antiferromagnetic and(More)
The oxygen stoichiometry has a large influence on the physical and chemical properties of complex oxides. Most of the functionality in e.g. catalysis and electrochemistry depends in particular on control of the oxygen stoichiometry. In order to understand the fundamental properties of intrinsic surfaces of oxygen-deficient complex oxides, we report on in(More)
We report electronic transport measurements on high quality floating zone grown Na(x)CoO2 and Na0.41CoO2·0.6H2O single crystals. We find an in-plane electronic scattering minimum near 11 K and a clear charge ordering at approximately 50 K. The electronic and magnetic properties in hydrated and nonhydrated Na0.41CoO2 samples are similar at higher(More)
A metastable phase α-FeSi_{2} was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on α-FeSi_{2} (111) thin films, while the bulk material of α-FeSi_{2} is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong(More)
  • 1