Learn More
Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties play key roles in the discovery/development of drugs, pesticides, food additives, consumer products, and industrial chemicals. This information is especially useful when to conduct environmental and human hazard assessment. The most critical rate limiting step in the chemical(More)
Adverse side effects of drug-drug interactions induced by human cytochrome P450 (CYP) inhibition is an important consideration, especially, during the research phase of drug discovery. It is highly desirable to develop computational models that can predict the inhibitive effect of a compound against a specific CYP isoform. In this study, inhibitor(More)
Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug(More)
Chemical-protein interaction (CPI) is the central topic of target identification and drug discovery. However, large scale determination of CPI is a big challenge for in vitro or in vivo experiments, while in silico prediction shows great advantages due to low cost and high accuracy. On the basis of our previous drug-target interaction prediction via(More)
Biodegradation is the principal environmental dissipation process. Due to a lack of comprehensive experimental data, high study cost and time-consuming, in silico approaches for assessing the biodegradable profiles of chemicals are encouraged and is an active current research topic. Here we developed in silico methods to estimate chemical biodegradability(More)
Cytochrome P450 inhibitory promiscuity of a drug has potential effects on the occurrence of clinical drug-drug interactions. Understanding how a molecular property is related to the P450 inhibitory promiscuity could help to avoid such adverse effects. In this study, an entropy-based index was defined to quantify the P450 inhibitory promiscuity of a compound(More)
Mutagenicity is one of the most important end points of toxicity. Due to high cost and laboriousness in experimental tests, it is necessary to develop robust in silico methods to predict chemical mutagenicity. In this paper, a comprehensive database containing 7617 diverse compounds, including 4252 mutagens and 3365 nonmutagens, was constructed. On the(More)
Virtual screening (VS) can be accomplished in either ligand- or structure-based methods. In recent times, an increasing number of 2D fingerprint and 3D shape similarity methods have been used in ligand-based VS. To evaluate the performance of these ligand-based methods, retrospective VS was performed on a tailored directory of useful decoys (DUD). The VS(More)
Prediction of polypharmacological profiles of drugs enables us to investigate drug side effects and further find their new indications, i.e. drug repositioning, which could reduce the costs while increase the productivity of drug discovery. Here we describe a new computational framework to predict polypharmacological profiles of drugs by the integration of(More)