Learn More
Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug(More)
Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties play key roles in the discovery/development of drugs, pesticides, food additives, consumer products, and industrial chemicals. This information is especially useful when to conduct environmental and human hazard assessment. The most critical rate limiting step in the chemical(More)
Adverse side effects of drug-drug interactions induced by human cytochrome P450 (CYP) inhibition is an important consideration, especially, during the research phase of drug discovery. It is highly desirable to develop computational models that can predict the inhibitive effect of a compound against a specific CYP isoform. In this study, inhibitor(More)
Ribonucleic acid (RNA) molecules play central roles in a variety of biological processes and, hence, are attractive targets for therapeutic intervention. In recent years, molecular docking techniques have become one of the most popular and successful approaches in drug discovery; however, almost all docking programs are protein based. The adaptability of(More)
Prediction of polypharmacological profiles of drugs enables us to investigate drug side effects and further find their new indications, i.e. drug repositioning, which could reduce the costs while increase the productivity of drug discovery. Here we describe a new computational framework to predict polypharmacological profiles of drugs by the integration of(More)
Chemical-protein interaction (CPI) is the central topic of target identification and drug discovery. However, large scale determination of CPI is a big challenge for in vitro or in vivo experiments, while in silico prediction shows great advantages due to low cost and high accuracy. On the basis of our previous drug-target interaction prediction via(More)
Mutagenicity is one of the most important end points of toxicity. Due to high cost and laboriousness in experimental tests, it is necessary to develop robust in silico methods to predict chemical mutagenicity. In this paper, a comprehensive database containing 7617 diverse compounds, including 4252 mutagens and 3365 nonmutagens, was constructed. On the(More)
Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a(More)
Biodegradation is the principal environmental dissipation process. Due to a lack of comprehensive experimental data, high study cost and time-consuming, in silico approaches for assessing the biodegradable profiles of chemicals are encouraged and is an active current research topic. Here we developed in silico methods to estimate chemical biodegradability(More)