Learn More
A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries. The proposed approach is(More)
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper fo-cuses on the large-scale matrix factorization problem that consists of learning the basis set in order to adapt it to specific data. Variations of this problem(More)
LOCO-I (LOw COmplexity LOssless COmpression for Images) is the algorithm at the core of the new ISO/ITU standard for lossless and near-lossless compression of continuous-tone images, JPEG-LS. It is conceived as a "low complexity projection" of the universal context modeling paradigm, matching its modeling unit to a simple coding unit. By combining(More)
Sparse coding---that is, modelling data vectors as sparse linear combinations of basis elements---is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on <i>learning</i> the basis set, also called dictionary, to adapt it to specific data, an approach that has recently proven to be very effective for signal(More)
We propose in this paper to unify two different approaches to image restoration: On the one hand, learning a basis set (dictionary) adapted to sparse signal descriptions has proven to be very effective in image reconstruction and classification tasks. On the other hand, explicitly exploiting the self-similarities of natural images has led to the successful(More)
Inpainting, the technique of modifying an image in an undetectable form, is as ancient as art itself. The goals and applications of inpainting are numerous, from the restoration of damaged paintings and photographs to the removal/replacement of selected objects. In this paper, we introduce a novel algorithm for digital inpainting of still images that(More)
Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edge-stopping" function in the anisotropic diffusion equation is closely related to the error norm and(More)
We consider the problem of finding a few representatives for a dataset, i.e., a subset of data points that efficiently describes the entire dataset. We assume that each data point can be expressed as a linear combination of the representatives and formulate the problem of finding the representatives as a sparse multiple measurement vector problem. In our(More)
Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted dictionaries for images has been a major challenge. The(More)
It is now well established that sparse signal models are well suited to restoration tasks and can effectively be learned from audio, image, and video data. Recent research has been aimed at learning discriminative sparse models instead of purely reconstructive ones. This paper proposes a new step in that direction, with a novel sparse representation for(More)