Guillermo Goldstein

Learn More
Functional convergence in hydraulic architecture and water relations, and potential trade-offs in resource allocation were investigated in six dominant neotropical savanna tree species from central Brazil during the peak of the dry season. Common relationships between wood density and several aspects of plant water relations and hydraulic architecture were(More)
The effects of biological invasions are most evident in isolated oceanic islands such as the Hawaiian Archipelago, where invasive plant species are rapidly changing the composition and function of plant communities. In this study, we compared the specific leaf area (SLA), leaf tissue construction cost (CC), leaf nutrient concentration, and net CO2(More)
Growth, biomass allocation, and photosynthetic characteristics of seedlings of five invasive non-indigenous and four native species grown under different light regimes were studied to help explain the success of invasive species in Hawaiian rainforests. Plants were grown under three greenhouse light levels representative of those found in the center and(More)
Tropical moist forests are notable for their richness in tree species. The presence of such a diverse tree flora presents potential problems for scaling up estimates of water use from individual trees to entire stands and for drawing generalizations about physiological regulation of water use in tropical trees. We measured sapwood area or sap flow, or both,(More)
Photosynthetic gas exchange, chlorophyll fluorescence, nitrogen use efficiency, and related leaf traits of native Hawaiian tree ferns in the genus Cibotium were compared with those of the invasive Australian tree fern Sphaeropteris cooperi in an attempt to explain the higher growth rates of S. cooperi in Hawaii. Comparisons were made between mature(More)
Seasonal regulation of leaf water potential (ΨL) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season. Despite marked seasonal variation in precipitation and air saturation deficit (D), seasonal differences in midday minimum ΨL were small in all of the study species. Water use(More)
Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the(More)
We used concurrent measurements of soil water content and soil water potential (Psi(soil)) to assess the effects of Psi(soil) on uptake and hydraulic redistribution (HR) of soil water by roots during seasonal drought cycles at six sites characterized by differences in the types and amounts of woody vegetation and in climate. The six sites included a(More)
The impact of nocturnal water loss and recharge of stem water storage on predawn disequilibrium between leaf (psiL) and soil (psiS) water potentials was studied in three dominant tropical savanna woody species in central Brazil (Cerrado). Sap flow continued throughout the night during the dry season and contributed from 13 to 28% of total daily(More)
Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occurring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (psi root) was about(More)