Guillermo A. Pérez

Learn More
In this paper, we describe a synthesis algorithm for safety specifications described as circuits. Our algorithm is based on fixpoint computations, abstraction and refinement, it uses binary decision diagrams as symbolic data structure. We evaluate our tool on the benchmarks provided by the organizers of the synthesis competition organized within the SYNT'14(More)
We introduce the reactive synthesis competition (SYNTCOMP), a long-term effort intended to stimulate and guide advances in the design and application of synthesis procedures for reactive systems. The first iteration of SYNTCOMP is based on the controller synthesis problem for finite-state systems and safety specifications. We provide an overview of this(More)
Mean-payoff games (MPGs) are infinite duration two-player zero-sum games played on weighted graphs. Under the hypothesis of perfect information, they admit memoryless optimal strategies for both players and can be solved in NP ∩ coNP. MPGs are suitable quantitative models for open reactive systems. However, in this context the assumption of perfect(More)
We report on the design and results of the second reactive synthesis competition (SYNTCOMP 2015). We describe our extended benchmark library, with 6 completely new sets of benchmarks, and additional challenging instances for 4 of the benchmark sets that were already used in SYNTCOMP 2014. To enhance the analysis of experimental results, we introduce an(More)
In this invited contribution [7], we summarize new solution concepts useful for the synthesis of reactive systems that we have introduced in several recent publications. These solution concepts are developed in the context of non-zero sum games played on graphs. They are part of the contributions obtained in the inVEST project funded by the European(More)
Two-player zero-sum games of infinite duration and their quantitative versions are used in verification to model the interaction between a controller (Eve) and its environment (Adam). The question usually addressed is that of the existence (and computability) of a strategy for Eve that can maximize her payoff against any strategy of Adam. In this work, we(More)
We study the synthesis of circuits for succinct safety specifications given in the AIG format. We show how AIG safety specifications can be decomposed automatically into sub-specifications. Then we propose symbolic compositional algorithms to solve the synthesis problem compositionally starting for the sub-specifications. We have evaluated the compositional(More)
In this paper, we study the problem of minimizing regret in discounted-sum games played on weighted game graphs. We give algorithms for the general problem of computing the minimal regret of the controller (Eve) as well as several variants depending on which strategies the environment (Adam) is permitted to use. We also consider the problem of synthesizing(More)