Learn More
One fundamental question concerning brain reward mechanisms is to determine how reward-related activity is influenced by the nature of rewards. Here, we review the neuroimaging literature and explicitly assess to what extent the representations of primary and secondary rewards overlap in the human brain. To achieve this goal, we performed an activation(More)
To ensure their survival, animals exhibit a number of reward-directed behaviors, such as foraging for food or searching for mates. This suggests that a core set of brain regions may be shared by many species to process different types of rewards. Conversely, many new brain areas have emerged over the course of evolution, suggesting potential specialization(More)
Gambling is pertinent to neuroscience research for at least two reasons. First, gambling is a naturalistic and pervasive example of risky decision making, and thus gambling games can provide a paradigm for the investigation of human choice behavior and "irrationality." Second, excessive gambling involvement (i.e., pathological gambling) is currently(More)
Pathological gambling is an addictive disorder characterized by a persistent and compulsive desire to engage in gambling activities. This maladaptive behaviour has been suggested to result from a decreased sensitivity to experienced rewards, regardless of reward type. Alternatively, pathological gambling might reflect an imbalance in the sensitivity to(More)
BACKGROUND Pathological gambling (PG) is an impulse control disorder characterized by excessive monetary risk seeking in the face of negative consequences. We used tools from the field of behavioral economics to refine our description of risk-taking behavior in pathological gamblers. This theoretical framework allowed us to confront two hypotheses: (1)(More)
Reward comparison in the brain is thought to be achieved through the use of a 'common currency', implying that reward value representations are computed on a unique scale in the same brain regions regardless of the reward type. Although such a mechanism has been identified in the ventro-medial prefrontal cortex and ventral striatum in the context of(More)
Confocal image of the saccular epithelium and nerve of a 2-d-old rat; the utricular epithelium is partly visible from the side at the top left. Overlying structures have been removed to expose the apical surfaces of the epithelia. The vestibular nerve fibers are labeled with anti-␤III tubulin (red), hair bundles are labeled with phalloidin (green), and type(More)
Pathological gambling has been associated with dopamine transmission abnormalities, in particular dopamine D2-receptor deficiency, and reversal learning deficits. Moreover, pervasive theoretical accounts suggest a key role for dopamine in reversal learning. However, there is no empirical evidence for a direct link between dopamine, reversal learning and(More)
(Eurycea guttolineata) capturing a cricket with high-speed tongue projection. The cricket's velocity is such that, were the salamander to project at the delayed neural image formed on the retina, it would miss the cricket by a full body length. Salamanders aim their tongues by using linear extrapolation to estimate future prey position, thereby compensating(More)
Pathological gambling is a behavioral addiction characterized by a chronic failure to resist the urge to gamble. It shares many similarities with drug addiction. Glucocorticoid hormones including cortisol are thought to play a key role in the vulnerability to addictive behaviors, by acting on the mesolimbic reward pathway. Based on our previous report of an(More)