Guillaume Salbreux

Raphaël Etournay6
Matthias Merkel6
6Raphaël Etournay
6Matthias Merkel
6Suzanne Eaton
Learn More
How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively(More)
Blebs are spherical membrane protrusions often observed during cell migration, cell spreading, cytokinesis, and apoptosis, both in cultured cells and in vivo. Bleb expansion is thought to be driven by the contractile actomyosin cortex, which generates hydrostatic pressure in the cytoplasm and can thus drive herniations of the plasma membrane. However, the(More)
The cortex is a thin, crosslinked actin network lying immediately beneath the plasma membrane of animal cells. Myosin motors exert contractile forces in the meshwork. Because the cortex is attached to the cell membrane, it plays a central role in cell shape control. The proteic constituents of the cortex undergo rapid turnover, making the cortex both(More)
The composite and versatile structure of the cytoskeleton confers complex mechanical properties on cells. Actin filaments sustain the cell membrane and their dynamics insure cell shape changes. For example, the lamellipodium moves by actin polymerization, a mechanism that has been studied using simplified experimental systems. Much less is known about the(More)
The orderly packing and precise arrangement of epithelial cells is essential to the functioning of many tissues, and refinement of this packing during development is a central theme in animal morphogenesis. The mechanisms that determine epithelial cell shape and position, however, remain incompletely understood. Here, we investigate these mechanisms in a(More)
Single and collective cellular oscillations involving the actomyosin cytoskeleton have been observed in numerous biological systems. We show here that a generic model of a contractile material, which is turning over and contracts against an elastic element, exhibits spontaneous oscillations. Such a model can thus account for shape oscillations observed in(More)
Cell shape is determined by cellular mechanics. Cell deformations in animal cells, such as those required for cell migration, division or epithelial morphogenesis, are largely controlled by changes in mechanical stress and tension at the cell surface. The plasma membrane and the actomyosin cortex control surface mechanics and determine cell surface tension.(More)
  • Raphaël Etournay, Matthias Merkel, Marko Popović, Holger Brandl, Natalie A Dye, Benoît Aigouy +3 others
  • 2016
Segmentation and tracking of cells in long-term time-lapse experiments has emerged as a powerful method to understand how tissue shape changes emerge from the complex choreography of constituent cells. However, methods to store and interrogate the large datasets produced by these experiments are not widely available. Furthermore, recently developed methods(More)
We study the deformation and the remodeling of two-dimensional cellular materials. Examples are epithelia, which undergo large-scale deformations during the development of a multi-cellular organism. Such large-scale deformations emerge from processes such as cell shape changes, cell rearrangements, cell divisions, and cell extrusions. In this article, we(More)
In this article, we propose a general framework to study the dynamics and topology of cellular networks that capture the geometry of cell packings in two-dimensional tissues. Such epithelia undergo large-scale deformation during morphogenesis of a multicellular organism. Large-scale deformations emerge from many individual cellular events such as cell shape(More)