Learn More
How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively(More)
Blebs are spherical membrane protrusions often observed during cell migration, cell spreading, cytokinesis, and apoptosis, both in cultured cells and in vivo. Bleb expansion is thought to be driven by the contractile actomyosin cortex, which generates hydrostatic pressure in the cytoplasm and can thus drive herniations of the plasma membrane. However, the(More)
The cortex is a thin, crosslinked actin network lying immediately beneath the plasma membrane of animal cells. Myosin motors exert contractile forces in the meshwork. Because the cortex is attached to the cell membrane, it plays a central role in cell shape control. The proteic constituents of the cortex undergo rapid turnover, making the cortex both(More)
We demonstrate that 3T3 fibroblast cells can exhibit periodic shape oscillations following a loss of cell-substrate adhesion. The oscillatory behavior can last many hours at a constant frequency, and can be switched off and on using chemical agents. We show that the oscillation frequency increases with increasing acto-myosin contractility. The oscillations(More)
Cell shape is determined by cellular mechanics. Cell deformations in animal cells, such as those required for cell migration, division or epithelial morphogenesis, are largely controlled by changes in mechanical stress and tension at the cell surface. The plasma membrane and the actomyosin cortex control surface mechanics and determine cell surface tension.(More)
Single and collective cellular oscillations involving the actomyosin cytoskeleton have been observed in numerous biological systems. We show here that a generic model of a contractile material, which is turning over and contracts against an elastic element, exhibits spontaneous oscillations. Such a model can thus account for shape oscillations observed in(More)
A cell is a complex material whose mechanical properties are essential for its normal functions. Heating can have a dramatic effect on these mechanical properties, similar to its impact on the dynamics of artificial polymer networks. We investigated such mechanical changes by the use of a microfluidic optical stretcher, which allowed us to probe cell(More)
In this article, we propose a general framework to study the dynamics and topology of cellular networks that capture the geometry of cell packings in two-dimensional tissues. Such epithelia undergo large-scale deformation during morphogenesis of a multicellular organism. Large-scale deformations emerge from many individual cellular events such as cell shape(More)
Segmentation and tracking of cells in long-term time-lapse experiments has emerged as a powerful method to understand how tissue shape changes emerge from the complex choreography of constituent cells. However, methods to store and interrogate the large datasets produced by these experiments are not widely available. Furthermore, recently developed methods(More)
Animal cells can sense chemical gradients without moving and are faced with the challenge of migrating towards a target despite noisy information on the target position. Here we discuss optimal search strategies for a chaser that moves by switching between two phases of motion ("run" and "tumble"), reorienting itself towards the target during tumble phases,(More)