Learn More
This paper presents an algebraic framework allowing to algebraically model dynamic gates and determine the structure function of any Dynamic Fault Tree (DFT). This structure function can then be exploited to perform both the qualitative and quantitative analysis of DFTs directly, even though this latter aspect is not detailed in this paper. We illustrate(More)
This paper focuses on a subclass of Dynamic Fault Trees (DFTs), called Priority Dynamic Fault Trees (PDFTs), containing only static gates and Priority Dynamic Gates (PAND and FDEP) for which a priority relation among the input nodes completely determines the output behavior. We define events as temporal variables and we show that, by adding to the usual(More)
  • 1