Guillaume Merle

Learn More
This paper presents an algebraic framework allowing to algebraically model dynamic gates and determine the structure function of any Dynamic Fault Tree (DFT). This structure function can then be exploited to perform both the qualitative and quantitative analysis of DFTs directly, even though this latter aspect is not detailed in this paper. We illustrate(More)
This paper presents a probabilistic model of dynamic gates which allows to perform the quantitative analysis of any dynamic fault tree (DFT) from its structure function. Both these probabilistic models and the quantitative analysis which can be performed thanks to them can accommodate any failure distribution of basic events. We illustrate our approach on a(More)
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la(More)
This paper focuses on a subclass of Dynamic Fault Trees (DFTs), called Priority Dynamic Fault Trees (PDFTs), containing only static gates and Priority Dynamic Gates (PAND and FDEP) for which a priority relation among the input nodes completely determines the output behavior. We define events as temporal variables and we show that, by adding to the usual(More)
  • 1