Guillaume Jannot

Learn More
Despite the importance of microRNAs (miRNAs) in gene regulation, it is unclear how the miRNA-Argonaute complex--or miRNA-induced silencing complex (miRISC)--can regulate the translation of their targets in such diverse ways. We demonstrate here a direct interaction between the miRISC and the ribosome by showing that a constituent of the eukaryotic 40S(More)
Great advances in analytical technology coupled with accelerated new drug development and growing understanding of biological challenges, such as tumor heterogeneity, have required a change in the focus for biobanking. Most current banks contain samples of primary tumors, but linking molecular signatures to therapeutic questions requires serial biopsies in(More)
During the last decade, several novel small non-coding RNA pathways have been unveiled, which reach out to many biological processes. Common to all these pathways is the binding of a small RNA molecule to a protein member of the Argonaute family, which forms a minimal core complex called the RNA-induced silencing complex or RISC. The RISC targets mRNAs in a(More)
MiRNAs can regulate gene expression through versatile mechanisms that result in increased or decreased expression of the targeted mRNA and it could effect the expression of thousands of protein in a particular cell. An increasing body of evidence suggest that miRNAs action can be modulated by proteins that bind to the same 3'UTRs that are targeted by(More)
In Caenorhabditis elegans, specific Argonaute proteins are dedicated to the RNAi and microRNA pathways. To uncover how the precise Argonaute selection occurs, we designed dsRNA triggers containing both miRNA and siRNA sequences. While dsRNA carrying nucleotides mismatches can only enter the miRNA pathway, a fully complementary dsRNA successfully rescues(More)
Many core components of the microRNA pathway have been elucidated and knowledge of their mechanisms of action actively progresses. In contrast, factors with modulatory roles on the pathway are just starting to become known and understood. Using a genetic screen in Caenorhabditis elegans, we identify a component of the GARP (Golgi Associated Retrograde(More)
Cytoplasmic poly(A)-binding proteins (PABPs) link mRNA 3' termini to translation initiation factors, but they also play key roles in mRNA regulation and decay. Reports from mice, zebrafish and Drosophila further involved PABPs in microRNA (miRNA)-mediated silencing, but through seemingly distinct mechanisms. Here, we implicate the two Caenorhabditis elegans(More)
The genes alg-1 and alg-2 (referred to as "alg-1/2") encode the Argonaute proteins affiliated to the microRNA (miRNA) pathway in C. elegans. Bound to miRNAs they form the effector complex that effects post-transcriptional gene silencing. In order to define biological features important to understand the mode of action of these Argonautes, we characterize(More)
Argonaute proteins associate with microRNAs and are key components of gene silencing pathways. With such a pivotal role, these proteins represent ideal targets for regulatory post-translational modifications. Using quantitative mass spectrometry, we find that a C-terminal serine/threonine cluster is phosphorylated at five different residues in human and(More)
1: Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada 2: These authors contributed equally to this work 3: Division of Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom 4: University of Technology Sydney, Centre for Health Technologies,(More)