Learn More
Chromatin is important for the regulation of transcription and other functions, yet the diversity of chromatin composition and the distribution along chromosomes are still poorly characterized. By integrative analysis of genome-wide binding maps of 53 broadly selected chromatin components in Drosophila cells, we show that the genome is segmented into five(More)
Mammalian dosage compensation involves silencing of one of the two X chromosomes in females and is controlled by the X-inactivation center (Xic). The Xic, which includes Xist and its antisense transcription unit Tsix/Xite, somehow senses the number of X chromosomes and triggers Xist up-regulation from one of the two X chromosomes in females. We found that a(More)
In eukaryotes, many chromatin proteins together regulate gene expression. Chromatin proteins often direct the genomic binding pattern of other chromatin proteins, for example, by recruitment or competition mechanisms. The network of such targeting interactions in chromatin is complex and still poorly understood. Based on genome-wide binding maps, we(More)
The human genome is segmented into topologically associating domains (TADs), but the role of this conserved organization during transient changes in gene expression is not known. Here we describe the distribution of progestin-induced chromatin modifications and changes in transcriptional activity over TADs in T47D breast cancer cells. Using ChIP-seq(More)
MOTIVATION The increasing throughput of sequencing technologies offers new applications and challenges for computational biology. In many of those applications, sequencing errors need to be corrected. This is particularly important when sequencing reads from an unknown reference such as random DNA barcodes. In this case, error correction can be done by(More)
Friction is mostly unwanted in rotating machines. In order to reduce its impact on the system, the integration of magnetic bearings is frequently regarded as a valid solution. In rotating systems like flywheel energy storage systems (FESS), mechanical losses created by mechanical bearings greatly reduce the overall performance. Magnetic bearings are thus(More)
MOTIVATION Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is the standard method to investigate chromatin protein composition. As the number of community-available ChIP-seq profiles increases, it becomes more common to use data from different sources, which makes joint analysis challenging. Issues such as lack of(More)
The prediction of protein folding rates is a necessary step towards understanding the principles of protein folding. Due to the increasing amount of experimental data, numerous protein folding models and predictors of protein folding rates have been developed in the last decade. The problem has also attracted the attention of scientists from computational(More)