Learn More
Altered homeostasis of metal ions is suspected to play a critical role in neurodegeneration. However, the lack of analytical technique with sufficient spatial resolution prevents the investigation of metals distribution in neurons. An original experimental setup was developed to perform chemical element imaging with a 90 nm spatial resolution using(More)
Chronic exposure to manganese results in neurological symptoms referred to as manganism and is identified as a risk factor for Parkinson's disease. In vitro, manganese induces cell death in the dopaminergic cells, but the mechanisms of manganese cytotoxicity are still unexplained. In particular, the subcellular distribution of manganese and its interaction(More)
Hard X-ray fluorescence microscopy and magnified phase contrast imaging are combined to obtain quantitative maps of the projected metal concentration in whole cells. The experiments were performed on freeze dried cells at the nano-imaging station ID22NI of the European Synchrotron Radiation Facility (ESRF). X-ray fluorescence analysis gives the areal mass(More)
PET (Positron Emission Tomography) allows imaging of the in vivo distribution of biochemical compounds labeled with a radioactive tracer, mainly 18F-FDG (2-deoxy-2-[18F] fluoro-D-glucose). 18F only allows a relatively poor spatial resolution (2-3 mm) which does not allow imaging of small tumors or specific small size tissues, e.g. vasculature.(More)
  • 1