Learn More
Homologues of Drosophilia transient receptor potential (TRP) have been proposed to be unitary subunits of plasma membrane ion channels that are activated as a consequence of active or passive depletion of Ca(2+) stores. In agreement with this hypothesis, cells expressing TRPs display novel Ca(2+)-permeable cation channels that can be activated by the(More)
Capacitative Ca2+ entry (CCE) is Ca2+ entering after stimulation of inositol 1,4,5-trisphosphate (IP3) formation and initiation of Ca2+ store depletion. One hallmark of CCE is that it can also be triggered merely by store depletion, as occurs after inhibition of internal Ca2+ pumps with thapsigargin. Evidence has accumulated in support of a role of(More)
During the last 2 years, our laboratory has worked on the elucidation of the molecular basis of capacitative calcium entry (CCE) into cells. Specifically, we tested the hypothesis that CCE channels are formed of subunits encoded in genes related to the Drosophila trp gene. The first step in this pursuit was to search for mammalian trp genes. We found not(More)
The G protein Go is highly expressed in neurons and mediates effects of a group of rhodopsin-like receptors that includes the opioid, alpha2-adrenergic, M2 muscarinic, and somatostatin receptors. In vitro, Go is also activated by growth cone-associated protein of Mr 43,000 (GAP43) and the Alzheimer amyloid precursor protein, but it is not known whether this(More)
We reported previously that Go-deficient mice develop severe neurological defects that include hyperalgesia, a generalized tremor, lack of coordination, and a turning syndrome somewhat reminiscent of unilateral lesions of the dopaminergic nigro-striatal pathway. By using frozen coronal sections of serially sectioned brains of normal and Go-deficient mice,(More)
Calcium channels play important roles in cellular signalling. TRP (transient receptor potential) channels form a superfamily of calcium channels through which Ca(2+) enters the cell. TRPs have six transmembrane segments with a putative pore between the fifth and the sixth segments, and assemble in tetrameric complexes to form functional Ca(2+) channels.(More)
Activation of cells by agents that stimulate inositol trisphoshate (IP3) formation causes, via IP3 receptor (IP3R) activation, the release of Ca2+ from internal stores and also the entry of Ca2+ via plasma membrane cation channels, referred to as capacitative Ca2+ entry or CCE channels. Trp proteins have been proposed to be the unitary subunits forming CCE(More)
hTrp3 is a human homologue of the Drosophila gene responsible for a transient receptor potential (trp) mutation. When stably expressed in HEK293 cells, hTrp3 formed ion channels that were active under resting conditions but could be further stimulated by carbachol or ATP via endogenous muscarinic or purinergic receptors, respectively. Agonist evoked(More)
We present a case of respiratory depression likely due to oxy-codone and precipitated by fluconazole. Oxycodone demeth-ylation is catalyzed by CYP3A4 and CYP2D6 [1], with contribution ratios of 0.54 and 0.2, respectively [2]. Coadministration of oxycodone with strong CYP3A4 inhibi-tors results in raised oxycodone plasma levels [3–5]. Fluconazole inhibits(More)
BACKGROUND Preoperative L-lactatemia and heart rate have been suggested as prognostic indicators of outcome for cows with right dilatation of the abomasum or volvulus (RDA/AV). However, postoperative L-lactatemia has not been assessed as a potential prognostic tool. OBJECTIVES To determine the prognostic value of postoperative L-lactatemia (LAC2 ),(More)
  • 1