Learn More
RNA silencing phenomena were first discovered in plants, yet only the RNA interference pathway in animals has been subject to biochemical analysis. Here, we extend biochemical analysis to plant RNA silencing. We find that standard wheat germ extract contains Dicer-like enzymes that convert double-stranded RNA (dsRNA) into two classes of small interfering(More)
MicroRNAs (miRNAs) are small regulatory RNAs that participate in posttranscriptional gene regulation in a sequence-specific manner. However, little is understood about the role(s) of miRNAs in Alzheimer's disease (AD). We used miRNA expression microarrays on RNA extracted from human brain tissue from the University of Kentucky Alzheimer's Disease Center(More)
MicroRNAs (miRNAs) are approximately 22-nucleotide noncoding RNAs that can regulate gene expression by directing mRNA degradation or inhibiting productive translation. Dominant mutations in PHABULOSA (PHB) and PHAVOLUTA (PHV) map to a miR165/166 complementary site and impair miRNA-guided cleavage of these mRNAs in vitro. Here, we confirm that disrupted(More)
MicroRNAs (miRNAs) play vital roles in down-regulating gene expression at the post-transcriptional level. A set of 24 UV-B stress-responsive miRNAs (13 up-regulated and 11 down-regulated) was identified in Populus tremula plantlet by expression profiling with our in-house miRNA filter array. Six of the UV-B-responsive miRNA and their corresponding target(More)
Double-stranded RNA (dsRNA) triggers the destruction of mRNA sharing sequence with the dsRNA, a phenomenon termed RNA interference (RNAi). The dsRNA is converted by endonucleolytic cleavage into 21- to 23-nt small interfering RNAs (siRNAs), which direct a multiprotein complex, the RNA-induced silencing complex to cleave RNA complementary to the siRNA. RNAi(More)
MicroRNAs (miRNAs) are endogenous small RNAs of ~22 nucleotides (nt) that play a key role in down regulation of gene expression at the post-transcriptional level in plants and animals. Various studies have identified numerous miRNAs that were either up regulated or down regulated upon stress treatment. Here, we sought to understand the temporal regulation(More)
Two classes of short RNA molecule, small interfering RNA (siRNA) and microRNA (miRNA), have been identified as sequence-specific posttranscriptional regulators of gene expression. siRNA and miRNA are incorporated into related RNA-induced silencing complexes (RISCs), termed siRISC and miRISC, respectively. The current model argues that siRISC and miRISC are(More)
Granulin (GRN, or progranulin) is a protein involved in wound repair, inflammation, and neoplasia. GRN has also been directly implicated in frontotemporal dementia and may contribute to Alzheimer's disease pathogenesis. However, GRN regulation expression is poorly understood. A high-throughput experimental microRNA assay showed that GRN is the strongest(More)
MicroRNAs (miRNAs) are small noncoding ribonucleotides that bind mRNAs and function mainly as translational repressors in mammals. MicroRNAs have been implicated to play a role in many diseases, including diabetes. Several reports indicate an important function for miRNAs in insulin production as well as insulin secretion. We have recently carried out a(More)
MicroRNAs (miRNAs) have emerged as a class of gene expression regulators that play crucial roles in many biological processes. Recently, several reports have revealed that micoRNAs participate in regulation of symbiotic interaction between plants and nitrogen-fixing rhizobia bacteria. However, the role of miRNAs in another type of plant-microbe interaction,(More)